342 research outputs found
Smoking and its effect on scar healing
Scar formation is influenced by several factors such as wound infection, tension, wound depth and anatomical localization. Hypertrophic scarring is often the result of an imbalance in the wound and scar healing process. The exact underlying pathophysiological mechanism remains unclear. Smoking has a higher risk of postoperative complications probably due to a diminished macrophage induction. Following our clinical impression that smokers without postoperative wound infections show esthetically better scars, we evaluated the scars after a reduction mammaplasty in smoking and nonsmoking patients in a prospective clinical trial. Between July 2006 and September 2007, 13 smokers and 30 non smokers with a reduction mammaplasty were included. They were recruited from Viecuri Medical Centre and Atrium Medical Centre in the Netherlands after written consent. Surgical data and data of the patients' condition were collected. Follow-up for erythema values of the scars was done with a colorimeter (The Minolta CR-300, Minolta Camera Co., Ltd., Osaka Japan) at 1, 3, 6 and 9 months postoperatively on four standardized postsurgical sites. ANOVA and Chi-square test were used for statistical analysis. In the smoking group, the scars were significantly less red compared to the nonsmoking group. No significant differences were found in BMI, resection weight and drain production between both groups. Although smoking is certainly not recommended as a preventive therapy to influence scar healing, this study confirms our assumption that smokers tend to have faster and less erythemateous scar healing to nonsmokers. Further research is needed to understand the mechanism of the effect of smoking on scars
IdeS: A Bacterial Proteolytic Enzyme with Therapeutic Potential
Background: IdeS, a proteinase from Streptococcus pyogenes, cleaves immunoglobulin (Ig)G antibodies with a unique degree of specificity. Pathogenic IgG antibodies constitute an important clinical problem contributing to the pathogenesis of a number of autoimmune conditions and acute transplant rejection. To be able to effectively remove such antibodies is therefore an important clinical challenge. Methodology/Principal Findings: IdeS was found to specifically and efficiently cleave IgG in human blood in vitro (20 mg of IdeS caused a complete degradation of IgG in one ml of human whole blood in 15 minutes) and to clear IgG from the blood stream of rabbits in vivo (no IgG was detected six hours following an intravenous injection of 5 mg of IdeS) without any side effects. In a mouse model of immune thrombocytopenic purpura (ITP), polyclonal IgG antibodies against platelet surface antigens were used to induce a lethal disease. These profoundly thrombocytopenic animals were treated and cured by a single injection of IdeS. Conclusions/Significance: Novel information is provided concerning the IgG-cleaving activity of IdeS in vitro and in vivo. The highly specific and rapid elimination of IgG in vivo, the dramatic effect in a mouse model of ITP, and the lack of sid
Aging Skin: Nourishing from Out-In. Lessons from Wound Healing
Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis
integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis
through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer.
There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may
be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an
ever aging population
Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis
In sarcoidosis, the proinflammatory cytokines interferon gamma, tumour necrosis factor and interleukin-6 are released by monocyte-derived macrophages and lymphocytes in the lungs and other affected tissues. Regulatory receptors expressed on monocytes and macrophages act to suppress cytokine production, and reduced expression of regulatory receptors may thus promote tissue inflammation. The aim of this study was to characterise the role of regulatory receptors on blood monocytes in patients with sarcoidosis. Cytokine release in response to stimulation of whole blood was measured in healthy controls and Caucasian non-smoking patients with sarcoidosis who were not taking disease modifying therapy. Expression of the regulatory molecules IL-10R, SIRP-α/β, CD47, CD200R, and CD200L was measured by flow cytometry, and functional activity was assessed using blocking antibodies. Stimulated whole blood and monocytes from patients with sarcoidosis produced more TNF and IL-6 compared with healthy controls. 52.9% of sarcoidosis patients had monocytes characterised by low expression of CD200R, compared with 11.7% of controls (p < 0.0001). Patients with low monocyte CD200R expression produced higher levels of proinflammatory cytokines. In functional studies, blocking the CD200 axis increased production of TNF and IL-6. Reduced expression of CD200R on monocytes may be a mechanism contributing to monocyte and macrophage hyper-activation in sarcoidosis
Low-Dosage Inhibition of DII4 Signaling Promotes Wound Healing by Inducing Functional Neo-Angiogenesis
Recent findings regarding Dll4 function in physiological and pathological conditions indicate that this Notch ligand may constitute an important therapeutic target. Dll4 appears to be a major anti-angiogenic agent, occupying a central role in various angiogenic pathways. The first trials of anti-Dll4 therapy in mice demonstrated a paradoxical effect, as it reduced tumor perfusion and growth despite leading to an increase in vascular density. This is seen as the result of insufficient maturation of the newly formed vasculature causing a circulatory defect and increased tumor hypoxia. As Dll4 function is known to be closely dependent on expression levels, we envisioned that the therapeutic anti-Dll4 dosage could be modulated to result in the increase of adequately functional blood vessels. This would be useful in conditions where vascular function is a limiting factor for recovery, like wound healing and tissue hypoxia, especially in diabetic patients. Our experimental results in mice confirmed this possibility, revealing that low dosage inhibition of Dll4/Notch signaling causes improved vascular function and accelerated wound healing
Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice
Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain
Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs
In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny
between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of
MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell
sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like
(CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype
was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture
medium with TGF-b1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human
umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The
perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet,
suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM
produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The
osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of
the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created
construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood
vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the
proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.Funding provided by Fundacao para a Ciencia e a Tecnologia project Skingineering (PTDC/SAU-OSM/099422/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of T<sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-weight: inherit; font-style: inherit; font-size: 0.85em; font-family: inherit; line-height: 0; text-align: inherit; vertical-align: sub;">H2 Inflammation</sub>
A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (T(H)2)-related pathologies under the control of the archetypal T(H)2 cytokine interleukin-4 (IL-4) and was a fundamental component of T(H)2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells
- …