5,362 research outputs found
Electron-vibration coupling constants in positively charged fullerene
Recent experiments have shown that C60 can be positively field-doped. In that
state, fullerene exhibits a higher resistivity and a higher superconducting
temperature than the corresponding negatively doped state. A strong
intramolecular hole-phonon coupling, connected with the Jahn-Teller effect of
the isolated positive ion, is expected to be important for both properties, but
the actual coupling strengths are so far unknown. Based on density functional
calculations, we determine the linear couplings of the two a_g, six g_g, and
eight h_g vibrational modes to the H_u HOMO level of the C60 molecule. The
couplings predict a D_5 distortion, and an H_u vibronic ground state for C60^+.
They are also used to generate the dimensionless coupling constant
which controls the superconductivity and the phonon contribution to the
electrical resistivity in the crystalline phase. We find that is 1.4
times larger in positively-charged C60 than in the negatively-doped case. These
results are discussed in the context of the available transport data and
superconducting temperatures. The role of higher orbital degeneracy in
superconductivity is also addressed.Comment: 22 pages - 3 figures. This revision includes few punctuation
corrections from proofreadin
Nonequilibrium electron spin polarization in a double quantum dot. Lande mechanism
In moderately strong magnetic fields, the difference in Lande g-factors in
each of the dots of a coupled double quantum dot device may induce oscillations
between singlet and triplet states of the entangled electron pair and lead to a
nonequilibrium electron spin polarization. We will show that this polarization
may partially survive the rapid inhomogeneous decoherence due to random nuclear
magnetic fields.Comment: New version contains figures. New title better reflects the content
of the pape
Towards Supergravity Duals of Chiral Symmetry Breaking in Sasaki-Einstein Cascading Quiver Theories
We construct a first order deformation of the complex structure of the cone
over Sasaki-Einstein spaces Y^{p,q} and check supersymmetry explicitly. This
space is a central element in the holographic dual of chiral symmetry breaking
for a large class of cascading quiver theories. We discuss a solution
describing a stack of N D3 branes and M fractional D3 branes at the tip of the
deformed spaces.Comment: 28 pages, no figures. v2: typos, references and a note adde
Group projector generalization of dirac-heisenberg model
The general form of the operators commuting with the ground representation
(appearing in many physical problems within single particle approximation) of
the group is found. With help of the modified group projector technique, this
result is applied to the system of identical particles with spin independent
interaction, to derive the Dirac-Heisenberg hamiltonian and its effective space
for arbitrary orbital occupation numbers and arbitrary spin. This gives
transparent insight into the physical contents of this hamiltonian, showing
that formal generalizations with spin greater than 1/2 involve nontrivial
additional physical assumptions.Comment: 10 page
Density Functional Theory for the Photoionization Dynamics of Uracil
Photoionization dynamics of the RNA base Uracil is studied in the framework
of Density Functional Theory (DFT). The photoionization calculations take
advantage of a newly developed parallel version of a multicentric approach to
the calculation of the electronic continuum spectrum which uses a set of
B-spline radial basis functions and a Kohn-Sham density functional hamiltonian.
Both valence and core ionizations are considered. Scattering resonances in
selected single-particle ionization channels are classified by the symmetry of
the resonant state and the peak energy position in the photoelectron kinetic
energy scale; the present results highlight once more the site specificity of
core ionization processes. We further suggest that the resonant structures
previously characterized in low-energy electron collision experiments are
partly shifted below threshold by the photoionization processes. A critical
evaluation of the theoretical results providing a guide for future experimental
work on similar biosystems
Neutrino Physics and Nuclear Axial Two-Body Interactions
We consider the counter-term describing isoscalar axial two-body currents in
the nucleon-nucleon interaction, L1A, in the effective field theory approach.
We determine this quantity using the solar neutrino data. We investigate the
variation of L1A when different sets of data are used.Comment: 8 pages with 4 figures. To be published in the Proceedings of the
Conference "Blueprints For The Nucleus: From First Principles to Collective
Motion" held at Feza Gursey Institute, Istanbul, Turkey; May 17 -22, 200
Localized Wavefunctions and Magnetic Band Structure for Lateral Semiconductor Superlattices
In this paper we present calculations on the electronic band structure of a
two-dimensional lateral superlattice subject to a perpendicular magnetic field
by employing a projection operator technique based on the ray-group of
magnetotranslation operators. We construct a new basis of appropriately
symmetrized Bloch-like wavefunctions as linear combination of well-localized
magnetic-Wannier functions. The magnetic field was consistently included in the
Wannier functions defined in terms of free-electron eigenfunctions in the
presence of external magnetic field in the symmetric gauge. Using the above
basis, we calculate the magnetic energy spectrum of electrons in a lateral
superlattice with bi-directional weak electrostatic modulation. Both a square
lattice and a triangular one are considered as special cases. Our approach
based on group theory handles the cases of integer and rational magnetic fluxes
in a uniform way and the provided basis could be convenient for further both
analytic and numerical calculations.Comment: 19 pages, 5 figures. accepted to Int. J. Mod. Phys. B (April 2006
Modified group projectors: tight binding method
Modified group projector technique for induced representations is a powerful
tool for calculation and symmetry quantum numbers assignation of a tight
binding Hamiltonian energy bands of crystals. Namely, the induced type
structure of such a Hamiltonian enables efficient application of the procedure:
only the interior representations of the orbit stabilizers are to be
considered. Then the generalized Bloch eigen functions are obtained naturally
by the expansion to the whole state space. The method is applied to the
electronic pi-bands of the single wall carbon nanotubes: together with
dispersion relations, their complete symmetry assignation by the full symmetry
(line) groups and the corresponding symmetry-adapted eigen function are found.Comment: 10 pages 1 figur
Nonlinear Band Structure in Bose Einstein Condensates: The Nonlinear Schr\"odinger Equation with a Kronig-Penney Potential
All Bloch states of the mean field of a Bose-Einstein condensate in the
presence of a one dimensional lattice of impurities are presented in closed
analytic form. The band structure is investigated by analyzing the stationary
states of the nonlinear Schr\"odinger, or Gross-Pitaevskii, equation for both
repulsive and attractive condensates. The appearance of swallowtails in the
bands is examined and interpreted in terms of the condensates superfluid
properties. The nonlinear stability properties of the Bloch states are
described and the stable regions of the bands and swallowtails are mapped out.
We find that the Kronig-Penney potential has the same properties as a
sinusoidal potential; Bose-Einstein condensates are trapped in sinusoidal
optical lattices. The Kronig-Penney potential has the advantage of being
analytically tractable, unlike the sinusoidal potential, and, therefore, serves
as a good model for experimental phenomena.Comment: Version 2. Fixed typos, added referenc
Polyhedral Cosmic Strings
Quantum field theory is discussed in M\"obius corner kaleidoscopes using the
method of images. The vacuum average of the stress-energy tensor of a free
field is derived and is shown to be a simple sum of straight cosmic string
expressions, the strings running along the edges of the corners. It does not
seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include
- …
