2 research outputs found

    Modern materials for rapid prototyping

    No full text
    Niektóre spośród projektów naukowych wymagają nieszablonowego podejścia do problemu oraz nietypowego sprzętu laboratoryjnego. Stworzenie nowych prototypowych urządzeń coraz częściej staje się warunkiem koniecznym dla przeprowadzenia badań. Dzięki szybkiemu rozwojowi technologii projektowania i druku 3D możliwe jest rozbudowanie zaplecza technologicznego placówek badawczych. Podczas prac skupiono się na skonstruowaniu komory ciśnieniowej, która ma wiele zastosowań. Wspomniana komora (Rys. 1) została zaprojektowana przy pomocy oprogramowania CAD Autodesk Inventor Professional 2015. Komora składa się jedynie z kilku elementów, co ułatwia jej późniejsze złożenie przy pomocy prostych powszechnie dostępnych narzędzi. Komora ciśnieniowa jest zbudowana z poliwęglanu zmodyfikowanego różnymi dodatkami zmieniającymi właściwości filamentu. Jedną z możliwych modyfikacji jest dodatek nanokrzemionki, który posiada właściwości antybakteryjne. Umożliwia to wykonanie komory próżniowej wykorzystywanej np.: do sterylizacji narzędzi chirurgicznych. Wszystkie próbki użyte w tym projekcie przeszły testy szczelności wykonane metodą PALS (z ang. Positron Annihilation Lifetime Spectroscopy).Some of the scientific projects require outside the box approach to the problem and non-standard laboratory equipment. Creating a new prototype devices are increasingly becoming a prerequisite to conduct the research. Thanks to the rapid development of technology, design and 3D printing, make it possible to develop the technological facilities of research institutes. During the studies the main focus was on building the pressure chamber, which has various applications. Mentioned pressure chamber (Figure 1) was designed by the use of Autodesk Inventor Professional 2015 CAD software. The chamber consists of only few elements which facilitates the future assembling by using simple and commonly available tools. The pressure chamber is made of polycarbonate modified by various additives which change properties of filament. One of the possible modifications is nanosilicon additive which have antibacterial properties. It allows to use vacuum chamber for sterilization e.g. surgical instruments. All samples used in this project passed the tightness test associated with Positron Annihilation Lifetime Spectroscopy (PALS)

    The analysis of measurement data collection systems from the tribotesters

    No full text
    Przeprowadzając modelowe badania tribologiczne, dążąc do uzyskania wysokiej powtarzalności i odtwarzalności wyników, szczególną uwagę zwraca się na precyzyjne zadanie parametrów testu (prędkość ślizgania i obciążenie węzła) oraz kontrolę warunków otoczenia (temperatura, wilgotność). Jednocześnie często marginalizuje się sprawy związane z niedokładnością wykonania próbek. Niedokładności struktury geometrycznej powierzchni i kształtu są często spowodowane dodatkowymi procesami technologicznymi, realizowanymi po precyzyjnym wykonaniu bazy próbki. Powoduje to często zwiększenie bicia osiowego i promieniowego próbek. Może to spowodować błędną interpretację pomiaru intensywności zużywania liniowego oraz siły tarcia. W celu wyeliminowania wpływu bicia osiowego na pomiar intensywności zużywania liniowego, autorzy opracowali koncepcję oraz zaprojektowali i wykonali zautomatyzowany, sterowany komputerowo układ wyzwalania pomiaru charakterystyk tribologicznych w funkcji położenia tarczy, a nie, jak dotychczas, w funkcji czasu. System ten zastosowano w stanowisku T-01M opracowanym w ITeE – PIB Radom. Zmodyfikowane stanowisko poddano badaniom dwóch rodzajów skojarzeń materiałowych i przy dużej zmienności prędkości obrotowej węzła. Dodatkowo porównano wyniki charakterystyk tribologicznych uzyskane ze standardowego układu pomiarowego wyzwalanego czasem z uzyskanymi za pomocą opracowanego systemu. Z przeprowadzonych badań wynika, że stosowanie zautomatyzowanego systemu wyzwalania pomiaru w funkcji położenia tarczy powala na znaczne zmniejszenie rozrzutu wyników pomiarów przy niskich prędkościach obrotowych, a tym samym na poprawę powtarzalności i odtwarzalności badań tribologicznych w układzie kula–tarcza i trzpień–tarcza.When conducting tribological model studies with the aim of achieving a high repeatability and reproducibility of results, much attention is paid to the precise setting of test parameters. Most of all, setting the sliding speed and normal load is made with great care. Ambient conditions (temperature, humidity) are also controlled. At the same time, issues related to inaccuracy in making samples are often marginalized. Inaccuracies in surface geometric texture and shape are often caused by additional technological processes carried out after a precise execution of the sample base. This often increases the axial and radial run-out of samples. Moreover, it may lead to a misinterpretation of the measurement of linear wear intensity and friction. In order to eliminate the impact of the axial run-out on the measurement of linear wear intensity, the authors have developed a concept as well as designed and built an automated computer-controlled system of triggering the measurement of tribological characteristics as a function of a disc position, which is no longer as a function of time. This system was applied in the system of the T-01M produced by ITeE – PIB Radom. The modified system was tested on two types of material combinations and with a high variability of the speed of the node. In addition, the results of tribological characteristics obtained with a standard measuring system triggered with time were compared with those obtained using the developed system. The study shows that the use of an automated system of triggering measurement as a function of a disc position enables a considerable decrease in scattering measurement results at low engine speeds, thereby improving repeatability and reproducibility of tribological studies in the system ball-on-disc and pin-on-disc
    corecore