20 research outputs found
3D PET image reconstruction based on Maximum Likelihood Estimation Method (MLEM) algorithm
Positron emission tomographs (PET) do not measure an image directly. Instead,
they measure at the boundary of the field-of-view (FOV) of PET tomograph a
sinogram that consists of measurements of the sums of all the counts along the
lines connecting two detectors. As there is a multitude of detectors build-in
typical PET tomograph structure, there are many possible detector pairs that
pertain to the measurement. The problem is how to turn this measurement into an
image (this is called imaging). Decisive improvement in PET image quality was
reached with the introduction of iterative reconstruction techniques. This
stage was reached already twenty years ago (with the advent of new powerful
computing processors). However, three dimensional (3D) imaging remains still a
challenge. The purpose of the image reconstruction algorithm is to process this
imperfect count data for a large number (many millions) of lines-of-responce
(LOR) and millions of detected photons to produce an image showing the
distribution of the labeled molecules in space.Comment: 10 pages, 7 figure
TOF-PET detector concept based on organic scintillators
In this contribution we present a new concept of the large acceptance detector systems based on organic scintillators which may allow for simultaneous diagnostic of large fraction of the human body. Novelty of the concept lies in employing large blocks of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes
Plastic scintillators for positron emission tomography obtained by the bulk polymerization method
This paper describes three methods regarding the production of plastic
scintillators. One method appears to be suitable for the manufacturing of
plastic scintillator, revealing properties which fulfill the requirements of
novel positron emission tomography scanners based on plastic scintillators. The
key parameters of the manufacturing process are determined and discussed.Comment: 7 pages, 4 figure
Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument
Nowadays, in positron emission tomography (PET) systems, a time of fl ight (TOF) information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten signifi cantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS) theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta
Multiple scattering and accidental coincidences in the J-PET detector simulated using GATE package
Novel Positron Emission Tomography system, based on plastic scintillators, is developed by the J-PET collaboration. In order to optimize geometrical configuration of built device, advanced computer simulations are performed. Detailed study is presented of background given by accidental coincidences and multiple scattering of gamma quanta
Sampling FEE and trigger-less DAQ for the J-PET scanner
In this paper, we present a complete Data Acquisition System (DAQ) together with the readout mechanisms for the J-PET tomography scanner. In general, detector readout chain is constructed out of Front-End Electronics (FEE) measurement devices such as Time-to-Digital or Analog-to-Digital Converters (TDCs or ADCs), data collectors and storage. We have developed a system capable for maintaining continuous readout of digitized data without preliminary selection. Such operation mode results in up to 8 Gbps data stream, therefore, it is required to introduce a dedicated module for on-line event building and feature extraction. The Central Controller Module, equipped with Xilinx Zynq SoC and 16 optical transceivers, serves as such true real time computing facility. Our solution for the continuous data recording (trigger-less) is a novel approach in such detector systems and assures that most of the information is preserved on the storage for further, high-level processing. Signal discrimination applies a unique method of using LVDS buffers located in the FPGA fabric
A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET)
Abstract: This article presents an application of a novel technique for precise measurements of time and charge based solely on a field programmable gate array (FPGA) device for positron emission tomography (PET). The described approach simplifies electronic circuits, reduces the power consumption, lowers costs, merges front-end electronics with digital electronics, and also makes more compact final design. Furthermore, it allows to measure time when analog signals cross a reference voltage at different threshold levels with a very high precision of ~15 ps (rms) and thus enables sampling of signals in a voltage domain
Strip- PET : a novel detector concept for the TOF-PET scanner
We briefly present a design of a new PET scanner based on strips of polymer scintillators arranged in a barrel constituting a large acceptance detector. The solution proposed is based on the superior timing properties of the polymer scintillators. The position and time of the reaction of the gamma quanta in the detector material will be determined based on the time of arrival of light signals to the edges of the scintillator strips
Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument
Nowadays, in positron emission tomography (PET) systems, a time of flight (TOF) information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS) theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta