21 research outputs found

    Combination of PIP and LSI processes for SiC/SiC ceramic matrix composites

    Get PDF
    Silicon carbide fiber-reinforced silicon carbide matrix composites (SiC/SiC CMCs) are promising candidates for hot gas components in jet engines. Three common manufacturing routes are chemical vapor infiltration, reactive melt infiltration (RMI) and polymer infiltration and pyrolysis (PIP). A combination of the processes seems attractive: the remaining porosity after PIP process can be closed by subsequent siliconization, resulting in a dense material. This work describes a new approach of a combined PIP and RMI process. SiC/SiC CMCs were manufactured by PIP process using Hi-Nicalon Type S fibers. An additional RMI was carried out after a reduced number of PIP cycles. Microstructure was examined via microCT, SEM and EDS. Bending strength was determined to 433 ​MPa; strain to failure was 0.60%. The overall processing time was reduced by 55% compared to standard PIP route. The hybrid material contained 70% less unreacted carbon than material produced by LSI process alone

    Manufacture and Thermomechanical Characterization of Wet Filament Wound C/C‐SiC Composites

    Get PDF
    The paper presents manufacture of C/C‐SiC composite materials by wet filament winding of C‐fibres with a water based phenolic resin with subsequent curing via autoclave as well as pyrolysis and liquid silicon infiltration (LSI). Almost dense C/C‐SiC composite materials with different winding angles ranging from ±15° to ±75° could be obtained with porosities lower than 3% and densities in the range of 2 g/cm3. Thermomechanical characterization via tensile testing at room temperature and at 1300 °C revealed higher tensile strength at elevated temperature than at room temperature. Thus, C/C‐SiC material obtained by wet filament winding and LSI‐processing has excellent high temperature strength for high temperature applications. Crack patterns during pyrolysis, microstructure after siliconisation and tensile strength strongly depend on the fibre/matrix interface strength and winding angle. Moreover, calculation tools for composites, such as classical laminate and inverse laminate theory can be applied for structural evaluation and prediction of mechanical performance of C/C‐SiC structures

    Manufacture and Thermomechanical Characterisation of Wet Filament Wound C/C-SiC Composites

    Get PDF
    Ceramic matrix composites based on wet filament winding and LSI-processing are attractive candidates (C/C-SiC) for many applications in aerospace. Therefore, commercial C-fibres and a water-based phenolic resin were used for wet filament winding on a mandrel and subsequent curing in an autoclave, followed by pyrolysis to a C-matrix and liquid silicon infiltration (LSI) to form a C-SiC-matrix. By applying wet filament winding the mechanical properties can be tailor-designed according to the chosen fibre orientation since C/C-SiC is a fibre dominant and damage tolerant CMC material. Wet filament winding was performed on a mandrel with winding angles of +/-15°, +/-30° and +/-45°, +/-60° and +/-75° were made possible by cutting samples in perpendicular direction. Tubes in wet state were cut in axial direction, flattened and cured on a flat plate without applying additional pressure, such as warm pressing, in order to obtain similar curing conditions to tubes. Mechanical and thermomechanical characterisation of flat specimen of C/C-SiC composites was performed by using an Indutherm universal testing machine using inductive heating of samples and a laser extensometer for measuring of displacement under inert conditions. Testing of tensile specimens was performed at room temperature as well as high temperatures up to 1600°C. In addition, microstructural characterization was performed by SEM

    Evaluation of preparation and combustion rig tests of an effusive cooled SiC/SiCN panel

    Get PDF
    SiC/SiCN ceramic matrix composites (CMCs) are promising candidates for components of aero-engines. To evaluate the properties of these CMCs under realistic conditions, a quasi-flat panel with effusion cooling holes was investigated in a high pressure combustor rig. A Tyranno SA3 fabric-based SiC/SiCN composite with high strength and strain to failure was manufactured via polymer infiltration and pyrolysis process. Due to its weak matrix no fiber coating was necessary for damage tolerant behavior. The cooling holes in the panel were introduced via laser drilling. An outer coating of CVD-based SiC was finally applied for enhanced oxidation resistance. The specimen was tested in the combustor rig and the cooling effectiveness was evaluated. The microstructure of laser machined holes was studied via microscopy and energy-dispersive X-ray spectroscopy. The macrostructure was investigated via computing tomography scans before and after the combustor test. Material performances at higher temperatures were estimated via a material performance index. Local microstructure modifications were observed after laser drilling. No crack formation was observed in the CMC panels after rig tests. The measured global cooling effectiveness of 0.76 and the analytical performance evaluation demonstrate the potential benefit of SiC/SiCN materials in combustor applications
    corecore