6,046 research outputs found

    Steady state entanglement of two superconducting qubits engineered by dissipation

    Full text link
    We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.Comment: 12 pages, 5 figures; close to published versio

    Stability and structure of two coupled boson systems in an external field

    Full text link
    The lowest adiabatic potential expressed in hyperspherical coordinates is estimated for two boson systems in an external harmonic trap. Corresponding conditions for stability are investigated and the related structures are extracted for zero-range interactions. Strong repulsion between non-identical particles leads to two new features, respectively when identical particles attract or repel each other. For repulsion new stable structures arise with displaced center of masses. For attraction the mean-field stability region is restricted due to motion of the center of masses

    Using superlattice potentials to probe long-range magnetic correlations in optical lattices

    Full text link
    In Pedersen et al. (2011) we proposed a method to utilize a temporally dependent superlattice potential to mediate spin-selective transport, and thereby probe long and short range magnetic correlations in optical lattices. Specifically this can be used for detecting antiferromagnetic ordering in repulsive fermionic optical lattice systems, but more generally it can serve as a means of directly probing correlations among the atoms by measuring the mean value of an observable, the number of double occupied sites. Here, we provide a detailed investigation of the physical processes which limit the effectiveness of this "conveyer belt method". Furthermore we propose a simple ways to improve the procedure, resulting in an essentially perfect (error-free) probing of the magnetic correlations. These results shows that suitably constructed superlattices constitute a promising way of manipulating atoms of different spin species as well as probing their interactions.Comment: 12 pages, 9 figure

    Evaluation and validity of the Danish version of the Adult Strabismus Questionnaire AS-20

    Get PDF
    PURPOSE: Assessing health-related quality of life in patients with strabismus is important in evaluating the clinical benefits of strabismus treatment. The purpose of this study was to translate the Adult Strabismus Quality of Life Questionnaire (AS-20) into Danish and evaluate its reliability and validity in adult patients with strabismus in Denmark. METHODS: The AS-20 was translated into Danish in accordance with standard international adopted methods. We presented the questionnaire to 64 adults with strabismus and to 13 non-strabismic adult controls. We tested the reliability of the Danish version by reassuring test–retest reliability, estimated the internal consistency, and analyzed the validity (discriminatory power) of the questionnaire by comparing patient scores with scores from control individuals. RESULTS: The Danish AS-20 produced high level of internal consistency (Cronbach’s α values) for both subscales (psychosocial: 0.95 and functional: 0.85). We found good discriminatory power of the AS-20. The patients scored significantly lower not only on AS-20 composite score (median =63, interquartile range [IQR] =44–79) compared to healthy individuals (median =98, IQR =93–100) (P<0.0001) but also on all individual questions in both subscales (psychosocial: 1–10 and functional: 11–20). CONCLUSION: The Danish version of AS-20 shows high reliability and validity, and in our opinion, AS-20 is therefore a suitable instrument for evaluating self-perceived psychosocial and functional influence of strabismus

    Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice

    Full text link
    We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance 14-14 dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of ±8\pm 8 atoms on an ensemble of some 10310^3 atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum non-demolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice

    Structure of boson systems beyond the mean-field

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations. We use the hyperspherical adiabatic method and a decomposition of the wave function in two-body amplitudes. An analytic parametrization is used for the adiabatic effective radial potential. We discuss the structure of a condensate for arbitrary scattering length. Stability and time scales for various decay processes are estimated. The previously predicted Efimov-like states are found to be very narrow. We discuss the validity conditions and formal connections between the zero- and finite-range mean-field approximations, Faddeev-Yakubovskii formulation, Jastrow ansatz, and the present method. We compare numerical results from present work with mean-field calculations and discuss qualitatively the connection with measurements.Comment: 26 pages, 6 figures, submitted to J. Phys. B. Ver. 2 is 28 pages with modified figures and discussion

    Bogoliubov theory of entanglement in a Bose-Einstein condensate

    Full text link
    We consider a Bose-Einstein condensate which is illuminated by a short resonant light pulse that coherently couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an interesting entangled state called a spin squeezed state. This evolution is analysed in detail by developing a Bogoliubov theory which describes the entanglement of the atoms. Our calculation is a consistent expansion in 1/N1/\sqrt{N}, where NN is the number of particles in the condensate, and our theory predict that it is possible to produce spin squeezing by at least a factor of 1/N1/\sqrt{N}. Within the Bogoliubov approximation this result is independent of temperature.Comment: 14 pages, including 5 figures, minor changes in the presentatio

    Fast geometric gate operation of superconducting charge qubits in circuit QED

    Full text link
    A scheme for coupling superconducting charge qubits via a one-dimensional superconducting transmission line resonator is proposed. The qubits are working at their optimal points, where they are immune to the charge noise and possess long decoherence time. Analysis on the dynamical time evolution of the interaction is presented, which is shown to be insensitive to the initial state of the resonator field. This scheme enables fast gate operation and is readily scalable to multiqubit scenario
    corecore