1,303 research outputs found

    An efficient quantum memory based on two-level atoms

    Full text link
    We propose a method to implement a quantum memory for light based on ensembles of two-level atoms. Our protocol is based on controlled reversible inhomogeneous broadening (CRIB), where an external field first dephases the atomic polarization and thereby stores an incoming light pulse into collective states of the atomic ensemble, and later a reversal of the applied field leads to a rephasing of the atomic polarization and a reemission of the light. As opposed to previous proposals for CRIB based quantum memories we propose to only apply the broadening for a short period after most of the pulse has already been absorbed by the ensemble. We show that with this procedure there exist certain modes of the incoming light field which can be stored with an efficiency approaching 100% in the limit of high optical depth and long coherence time of the atoms. These results demonstrate that it is possible to operate an efficient quantum memory without any optical control fields

    Floquet quantum simulation with superconducting qubits

    Full text link
    We propose a quantum algorithm for simulating spin models based on periodic modulation of transmon qubits. Using Floquet theory we derive an effective time-averaged Hamiltonian, which is of the general XYZ class, different from the isotropic XY Hamiltonian typically realised by the physical setup. As an example, we provide a simple recipe to construct a transverse Ising Hamiltonian in the Floquet basis. For a 1D system we demonstrate numerically the dynamical simulation of the transverse Ising Hamiltonian and quantum annealing to its ground state. We benchmark the Floquet approach with a digital simulation procedure, and demonstrate that it is advantageous for limited resources and finite anharmonicity of the transmons. The described protocol can serve as a simple yet reliable path towards configurable quantum simulators with currently existing superconducting chips.Comment: 6+12 pages, 4+5 figure

    Efficient atomic clocks operated with several atomic ensembles

    Get PDF
    Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble. In this article we propose a scheme where the LO is locked to several atomic ensembles instead of one. This results in an exponential improvement compared to the conventional method and provides a stability of the clock scaling as (αN)m/2(\alpha N)^{-m/2} with NN being the number of atoms in each of the mm ensembles and α\alpha is a constant depending on the protocol being used to lock the LOComment: 10 pages, 8 figure

    Quantum networks with chiral light--matter interaction in waveguides

    Full text link
    We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral light--matter interfaces. The efficient chiral light--matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip, and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F0.998{\cal F} \sim 0.998 achievable in state-of-the-art quantum dot systems.Comment: 5 pages plus supplementary materia

    High dimensional measurement device independent quantum key distribution on two dimensional subspaces

    Get PDF
    Quantum key distribution (QKD) provides ultimate cryptographic security based on the laws of quantum mechanics. For point-to-point QKD protocols, the security of the generated key is compromised by detector side channel attacks. This problem can be solved with measurement device independent QKD (mdi-QKD). However, mdi-QKD has shown limited performances in terms of the secret key generation rate, due to post-selection in the Bell measurements. We show that high dimensional (Hi-D) encoding (qudits) improves the performance of current mdi-QKD implementations. The scheme is proven to be unconditionally secure even for weak coherent pulses with decoy states, while the secret key rate is derived in the single photon case. Our analysis includes phase errors, imperfect sources and dark counts to mimic real systems. Compared to the standard bidimensional case, we show an improvement in the key generation rate.Comment: 6 pages, 3 figure

    Elementary test for non-classicality based on measurements of position and momentum

    Full text link
    We generalise a non-classicality test described by Kot et al. [Phys. Rev. Lett. 108, 233601 (2010)], which can be used to rule out any classical description of a physical system. The test is based on measurements of quadrature operators and works by proving a contradiction with the classical description in terms of a probability distribution in phase space. As opposed to the previous work, we generalise the test to include states without rotational symmetry in phase space. Furthermore, we compare the performance of the non-classicality test with classical tomography methods based on the inverse Radon transform, which can also be used to establish the quantum nature of a physical system. In particular, we consider a non-classicality test based on the so-called filtered back-projection formula. We show that the general non-classicality test is conceptually simpler, requires less assumptions on the system and is statistically more reliable than the tests based on the filtered back-projection formula. As a specific example, we derive the optimal test for a quadrature squeezed single photon state and show that the efficiency of the test does not change with the degree of squeezing

    Enhancing quantum transduction via long-range waveguide mediated interactions between quantum emitters

    Full text link
    Efficient transduction of electromagnetic signals between different frequency scales is an essential ingredient for modern communication technologies as well as for the emergent field of quantum information processing. Recent advances in waveguide photonics have enabled a breakthrough in light-matter coupling, where individual two-level emitters are strongly coupled to individual photons. Here we propose a scheme which exploits this coupling to boost the performance of transducers between low-frequency signals and optical fields operating at the level of individual photons. Specifically, we demonstrate how to engineer the interaction between quantum dots in waveguides to enable efficient transduction of electric fields coupled to quantum dots. Owing to the scalability and integrability of the solid-state platform, our transducer can potentially become a key building block of a quantum internet node. To demonstrate this, we show how it can be used as a coherent quantum interface between optical photons and a two-level system like a superconducting qubit.Comment: The maintext has 6 pages, two column and 4 figure

    Three-dimensional theory of stimulated Raman scattering

    Full text link
    We present a three-dimensional theory of stimulated Raman scattering (SRS) or superradiance. In particular we address how the spatial and temporal properties of the generated SRS beam, or Stokes beam, of radiation depends on the spatial properties of the gain medium. Maxwell equations for the Stokes field operators and of the atomic operators are solved analytically and a correlation function for the Stokes field is derived. In the analysis we identify a superradiating part of the Stokes radiation that exhibit beam characteristics. We show how the intensity in this beam builds up in time and at some point largely dominates the total Stokes radiation of the gain medium. We show how the SRS depends on geometric factors such as the Fresnel number and the optical depth, and that in fact these two factors are the only factors describing the coherent radiation.Comment: 21 pages 14 figure

    Steady state entanglement of two superconducting qubits engineered by dissipation

    Full text link
    We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon microwave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.Comment: 12 pages, 5 figures; close to published versio

    Quantum nondemolition measurement of mechanical motion quanta

    Get PDF
    The fields of opto- and electromechanics have facilitated numerous advances in the areas of precision measurement and sensing, ultimately driving the studies of mechanical systems into the quantum regime. To date, however, the quantization of the mechanical motion and the associated quantum jumps between phonon states remains elusive. For optomechanical systems, the coupling to the environment was shown to preclude the detection of the mechanical mode occupation, unless strong single photon optomechanical coupling is achieved. Here, we propose and analyse an electromechanical setup, which allows to overcome this limitation and resolve the energy levels of a mechanical oscillator. We find that the heating of the membrane, caused by the interaction with the environment and unwanted couplings, can be suppressed for carefully designed electromechanical systems. The results suggest that phonon number measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
    corecore