1,282 research outputs found
Dispersion relations for stationary light in one-dimensional atomic ensembles
We investigate the dispersion relations for light coupled to one-dimensional
ensembles of atoms with different level schemes. The unifying feature of all
the considered setups is that the forward and backward propagating quantum
fields are coupled by the applied classical drives such that the group velocity
can vanish in an effect known as "stationary light". We derive the dispersion
relations for all the considered schemes, highlighting the important
differences between them. Furthermore, we show that additional control of
stationary light can be obtained by treating atoms as discrete scatterers and
placing them at well defined positions. For the latter purpose, a multi-mode
transfer matrix theory for light is developed
Universal Approach to Optimal Photon Storage in Atomic Media
We present a universal physical picture for describing storage and retrieval
of photon wave packets in a Lambda-type atomic medium. This physical picture
encompasses a variety of different approaches to pulse storage ranging from
adiabatic reduction of the photon group velocity and pulse-propagation control
via off-resonant Raman fields to photon-echo based techniques. Furthermore, we
derive an optimal control strategy for storage and retrieval of a photon wave
packet of any given shape. All these approaches, when optimized, yield
identical maximum efficiencies, which only depend on the optical depth of the
medium.Comment: 4 pages, 3 figures. V2: major changes in presentation (title,
abstract, main text), simplification of derivations, new references. V3:
minor changes - final version as published in Phys. Rev. Let
Optimal control of light pulse storage and retrieval
We demonstrate experimentally a procedure to obtain the maximum efficiency
for the storage and retrieval of light pulses in atomic media. The procedure
uses time reversal to obtain optimal input signal pulse-shapes. Experimental
results in warm Rb vapor are in good agreement with theoretical predictions and
demonstrate a substantial improvement of efficiency. This optimization
procedure is applicable to a wide range of systems.Comment: 5 pages, 4 figure
Spin Squeezing in the Ising Model
We analyze the collective spin noise in interacting spin systems. General
expressions are derived for the short time behaviour of spin systems with
general spin-spin interactions, and we suggest optimum experimental conditions
for the detection of spin squeezing. For Ising models with site dependent
nearest neighbour interactions general expressions are presented for the spin
squeezing parameter for all times. The reduction of collective spin noise can
be used to verify the entangling powers of quantum computer architectures based
on interacting spins.Comment: 7 pages, including 3 figure
Distributed Quantum Computation Based-on Small Quantum Registers
We describe and analyze an efficient register-based hybrid quantum
computation scheme. Our scheme is based on probabilistic, heralded optical
connection among local five-qubit quantum registers. We assume high fidelity
local unitary operations within each register, but the error probability for
initialization, measurement, and entanglement generation can be very high
(~5%). We demonstrate that with a reasonable time overhead our scheme can
achieve deterministic non-local coupling gates between arbitrary two registers
with very high fidelity, limited only by the imperfections from the local
unitary operation. We estimate the clock cycle and the effective error
probability for implementation of quantum registers with ion-traps or
nitrogen-vacancy (NV) centers. Our new scheme capitalizes on a new efficient
two-level pumping scheme that in principle can create Bell pairs with
arbitrarily high fidelity. We introduce a Markov chain model to study the
stochastic process of entanglement pumping and map it to a deterministic
process. Finally we discuss requirements for achieving fault-tolerant operation
with our register-based hybrid scheme, and also present an alternative approach
to fault-tolerant preparation of GHZ states.Comment: 22 Pages, 23 Figures and 1 Table (updated references
Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid on the Greenland Ice Sheet
The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [C-14]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to similar to 26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet
Entanglement and Extreme Spin Squeezing
For any mean value of a cartesian component of a spin vector we identify the
smallest possible uncertainty in any of the orthogonal components. The
corresponding states are optimal for spectroscopy and atomic clocks. We show
that the results for different spin J can be used to identify entanglement and
to quantity the depth of entanglement in systems with many particles. With the
procedure developed in this letter, collective spin measurements on an ensemble
of particles can be used as an experimental proof of multi-particle
entanglementComment: 4 pages, 2 figures, minor changes in the presentatio
Fiber-Based, Injection-Molded Optofluidic Systems: Improvements in Assembly and Applications
We present a method to fabricate polymer optofluidic systems by means of injection molding that allow the insertion of standard optical fibers. The chip fabrication and assembly methods produce large numbers of robust optofluidic systems that can be easily assembled and disposed of, yet allow precise optical alignment and improve delivery of optical power. Using a multi-level chip fabrication process, complex channel designs with extremely vertical sidewalls, and dimensions that range from few tens of nanometers to hundreds of microns can be obtained. The technology has been used to align optical fibers in a quick and precise manner, with a lateral alignment accuracy of 2.7 ± 1.8 μm. We report the production, assembly methods, and the characterization of the resulting injection-molded chips for Lab-on-Chip (LoC) applications. We demonstrate the versatility of this technology by carrying out two types of experiments that benefit from the improved optical system: optical stretching of red blood cells (RBCs) and Raman spectroscopy of a solution loaded into a hollow core fiber. The advantages offered by the presented technology are intended to encourage the use of LoC technology for commercialization and educational purposes
- …