11 research outputs found

    Double blockade of CD14 and complement C5 abolishes the cytokine storm and improves morbidity and survival in polymicrobial sepsis in mice

    Get PDF
    Sepsis and septic shock, caused by an excessive systemic host-inflammatory response, are associated with high morbidity and mortality. The complement system and TLRs provide important pattern recognition receptors initiating the cytokine storm by extensive cross-talk. We hypothesized that double blockade of complement C5 and the TLR coreceptor CD14 could improve survival of experimental polymicrobial sepsis. Mice undergoing cecal ligation and puncture (CLP)–induced sepsis were treated with neutralizing anti-CD14 Ab biG 53, complement C5 inhibitor coversin (Ornithodoros moubata C inhibitor), or a combination thereof. The inflammatory study (24-h observation) revealed statistically significant increases in 22 of 24 measured plasma biomarkers in the untreated CLP group, comprising 14 pro- and anti-inflammatory cytokines and 8 chemokines, growth factors, and granulocyte activation markers. Single CD14 or C5 blockade significantly inhibited 20 and 19 of the 22 biomarkers, respectively. Combined CD14 and C5 inhibition significantly reduced all 22 biomarkers (mean reduction 85%; range 54–95%) compared with the untreated CLP group. Double blockade was more potent than single treatment and was required to significantly inhibit IL-6 and CXCL1. Combined inhibition significantly reduced morbidity (motility and eyelid movement) and mortality measured over 10 d. In the positive control CLP group, median survival was 36 h (range 24–48 h). Combined treatment increased median survival to 96 h (range 24–240 h) (p = 0.001), whereas survival in the single-treatment groups was not significantly increased (median and range for anti-CD14 and anti-C5 treatment were 36 h [24–48 h] and 48 h [24–96 h]). Combined with standard intervention therapy, specific blockade of CD14 and C5 might represent a promising new therapeutic strategy for treatment of polymicrobial sepsis

    IL-6 Receptor Inhibition by Tocilizumab Attenuated Expression of C5a Receptor 1 and 2 in Non-ST-Elevation Myocardial Infarction

    Get PDF
    Background: Elevated interleukin-6 (IL-6) and complement activation are associated with detrimental effects of inflammation in coronary artery disease (CAD). The complement anaphylatoxins C5a and C3a interact with their receptors; the highly inflammatory C5aR1, and the C5aR2 and C3aR. We evaluated the effect of the IL-6 receptor (IL-6R)-antagonist tocilizumab on the expression of the anaphylatoxin receptors in whole blood from non-ST-elevation myocardial infarction (NSTEMI) patients. Separately, anaphylatoxin receptor expression in peripheral blood mononuclear cells (PBMC) from patients with different entities of CAD was investigated.Materials and Methods: NSTEMI patients were randomized to one dose of tocilizumab (n = 28) or placebo (n = 32) and observed for 6 months. Whole blood samples drawn at inclusion, at day 2, 3 and after 6 months were used for mRNA isolation. Plasma was prepared for analysis of complement activation measured as sC5b-9 by ELISA. Furthermore, patients with different CAD entities comprising stable angina pectoris (SAP, n = 22), non-ST-elevation acute coronary syndrome (NSTE-ACS, n = 21) and ST-elevation myocardial infarction (STEMI, n = 20) were included. PBMC was isolated from blood samples obtained at admission to hospital and mRNA isolated. Anaphylatoxin-receptor-expression was analyzed with qPCR using mRNA from whole blood and PBMC, respectively.Results: Our main findings were (i) Tocilizumab decreased C5aR1 and C5aR2 mRNA expression significantly (p < 0.001) and substantially (>50%) at day 2 and 3, whereas C3aR expression was unaffected. (ii) Tocilizumab did not affect complement activation. (iii) In analyzes of different CAD entities, C5aR1 expression was significantly increased in all CAD subgroups compared to controls with the highest level in the STEMI patients (p < 0.001). For C5aR2 and C3aR the expression compared to controls were more moderate with increased expression of C5aR2 in the STEMI group (p < 0.05) and C3aR in the NSTE-ACS group (p < 0.05).Conclusion: Expression of C5aR1 and C5aR2 in whole blood was significantly attenuated by IL-6R-inhibition in NSTEMI patients. These receptors were significantly upregulated in PBMC CAD patients with particularly high levels of C5aR1 in STEMI patients

    Elevated Terminal C5b-9 Complement Complex 10 Weeks Post Kidney Transplantation Was Associated With Reduced Long-Term Patient and Kidney Graft Survival

    Get PDF
    Background: The major reason for graft loss is chronic tissue damage, as interstitial fibrosis and tubular atrophy (IF/TA), where complement activation may serve as a mediator. The association of complement activation in a stable phase early after kidney transplantation with long-term outcomes is unexplored. Methods: We examined plasma terminal C5b-9 complement complex (TCC) 10 weeks posttransplant in 900 patients receiving a kidney between 2007 and 2012. Clinical outcomes were assessed after a median observation time of 9.3 years [interquartile range (IQR) 7.5–10.6]. Results: Elevated TCC plasma values (≥0.7 CAU/ml) were present in 138 patients (15.3%) and associated with a lower 10-year patient survival rate (65.7% vs. 75.5%, P < 0.003). Similarly, 10-year graft survival was lower with elevated TCC; 56.9% vs. 67.3% (P < 0.002). Graft survival was also lower when censored for death; 81.5% vs. 87.3% (P = 0.04). In multivariable Cox analyses, impaired patient survival was significantly associated with elevated TCC [hazard ratio (HR) 1.40 (1.02–1.91), P = 0.04] along with male sex, recipient and donor age, smoking, diabetes, and overall survival more than 1 year in renal replacement therapy prior to engraftment. Likewise, elevated TCC was independently associated with graft loss [HR 1.40 (1.06–1.85), P = 0.02] along with the same covariates. Finally, elevated TCC was in addition independently associated with death-censored graft loss [HR 1.69 (1.06–2.71), P = 0.03] as were also HLA-DR mismatches and higher immunological risk. Conclusions: Early complement activation, assessed by plasma TCC, was associated with impaired long-term patient and graft survival

    Elevated Terminal C5b-9 Complement Complex 10 Weeks Post Kidney Transplantation Was Associated With Reduced Long-Term Patient and Kidney Graft Survival

    Get PDF
    Background: The major reason for graft loss is chronic tissue damage, as interstitial fibrosis and tubular atrophy (IF/TA), where complement activation may serve as a mediator. The association of complement activation in a stable phase early after kidney transplantation with long-term outcomes is unexplored. Methods: We examined plasma terminal C5b-9 complement complex (TCC) 10 weeks posttransplant in 900 patients receiving a kidney between 2007 and 2012. Clinical outcomes were assessed after a median observation time of 9.3 years [interquartile range (IQR) 7.5–10.6]. Results: Elevated TCC plasma values (≥0.7 CAU/ml) were present in 138 patients (15.3%) and associated with a lower 10-year patient survival rate (65.7% vs. 75.5%, P Conclusions: Early complement activation, assessed by plasma TCC, was associated with impaired long-term patient and graft survival

    Organ inflammation in porcine Escherichia coli sepsis is markedly attenuated by combined inhibition of C5 and CD14.

    No full text
    Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14

    H2S-Enriched Flush out Does Not Increase Donor Organ Quality in a Porcine Kidney Perfusion Model

    Get PDF
    Kidney extraction time has a detrimental effect on post-transplantation outcome. This study aims to improve the flush-out and potentially decrease ischemic injury by the addition of hydrogen sulphide (H 2S) to the flush medium. Porcine kidneys ( n = 22) were extracted during organ recovery surgery. Pigs underwent brain death induction or a Sham operation, resulting in four groups: donation after brain death (DBD) control, DBD H 2S, non-DBD control, and non-DBD H 2S. Directly after the abdominal flush, kidneys were extracted and flushed with or without H 2S and stored for 13 h via static cold storage (SCS) +/- H 2S before reperfusion on normothermic machine perfusion. Pro-inflammatory cytokines IL-1b and IL-8 were significantly lower in H 2S treated DBD kidneys during NMP ( p = 0.03). The non-DBD kidneys show superiority in renal function (creatinine clearance and FENa) compared to the DBD control group ( p = 0.03 and p = 0.004). No differences were seen in perfusion parameters, injury markers and histological appearance. We found an overall trend of better renal function in the non-DBD kidneys compared to the DBD kidneys. The addition of H 2S during the flush out and SCS resulted in a reduction in pro-inflammatory cytokines without affecting renal function or injury markers

    Combined inhibition of complement (C5) and CD14 markedly attenuates inflammation, thrombogenicity, and hemodynamic changes in porcine sepsis

    No full text
    Complement and the TLR family constitute two important branches of innate immunity. We previously showed attenuating effects on inflammation and thromogenicity by inhibiting the TLR coreceptor CD14 in porcine sepsis. In the present study, we explored the effect of the C5 and leukotriene B4 inhibitor Ornithodoros moubata complement inhibitor (OmCI; also known as coversin) alone and combined with anti-CD14 on the early inflammatory, hemostatic, and hemodynamic responses in porcine Escherichia coli–induced sepsis. Pigs were randomly allocated to negative controls (n = 6), positive controls (n = 8), intervention with OmCI (n = 8), or with OmCI and anti-CD14 (n = 8). OmCI ablated C5 activation and formation of the terminal complement complex and significantly decreased leukotriene B4 levels in septic pigs. Granulocyte tissue factor expression, formation of thrombin–antithrombin complexes (p < 0.001), and formation of TNF-α and IL-6 (p < 0.05) were efficiently inhibited by OmCI alone and abolished or strongly attenuated by the combination of OmCI and anti-CD14 (p < 0.001 for all). Additionally, the combined therapy attenuated the formation of plasminogen activator inhibitor-1 (p < 0.05), IL-1β, and IL-8, increased the formation of IL-10, and abolished the expression of wCD11R3 (CD11b) and the fall in neutrophil cell count (p < 0.001 for all). Finally, OmCI combined with anti-CD14 delayed increases in heart rate by 60 min (p < 0.05) and mean pulmonary artery pressure by 30 min (p < 0.01). Ex vivo studies confirmed the additional effect of combining anti-CD14 with OmCI. In conclusion, upstream inhibition of the key innate immunity molecules, C5 and CD14, is a potential broad-acting treatment regimen in sepsis as it efficiently attenuated inflammation and thrombogenicity and delayed hemodynamic change
    corecore