15 research outputs found

    The Neoproterozoic Rivieradal Group of Kronprins Christian Land, eastern North Greenland

    Get PDF
    The Rivieradal Group, formally defined here, is confined to the Vandredalen thrust sheet of the Caledonian orogen in Kronprins Christian Land, eastern North Greenland. It comprises a succession of Neoproterozoic siliciclastic sediments that represent the fill of a half-graben basin. The syn-rift Rivieradal Group is overlain by post-rift sediments of the Hagen Fjord Group. The latter succession is present in both the thrust sheet and the Caledonian foreland to the west. In the foreland, where the Rivieradal Group is not represented, the Hagen Fjord Group disconformably overlies Palaeoproterozoic–Mesoproterozoic sandstones of the Independence Fjord Group

    Lithostratigraphy of the Cretaceous–Paleocene Nuussuaq Group, Nuussuaq Basin, West Greenland

    Get PDF
    The Nuussuaq Basin is the only exposed Cretaceous–Paleocene sedimentary basin in West Greenland and is one of a complex of linked rift basins stretching from the Labrador Sea to northern Baffin Bay. These basins developed along West Greenland as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The Nuussuaq Basin is exposed in West Greenland between 69°N and 72°N on Disko, Nuussuaq, Upernivik Ø, Qeqertarsuaq, Itsaku and Svartenhuk Halvø and has also been recorded in a number of shallow and deep wells in the region. The sediments are assigned to the more than 6 km thick Nuussuaq Group (new) which underlies the Palaeogene plateau basalts of the West Greenland Basalt Group. The sediment thickness is best estimated from seismic data; in the western part of the area, seismic and magnetic data suggest that the succession is at least 6 km and possibly as much as 10 km thick. The exposed Albian–Paleocene part of the succession testifies to two main episodes of regional rifting and basin development: an Early Cretaceous and a Late Cretaceous – Early Paleocene episode prior to the start of sea-floor spreading in mid-Paleocene time. This exposed section includes fan delta, fluviodeltaic, shelfal and deep marine deposits. The Nuussuaq Group is divided into ten formations, most of which have previously been only briefly described, with the exception of their macrofossil content. In ascending stratigraphic order, the formations are: the Kome Formation, the Slibestensfjeldet Formation (new), the Upernivik Næs Formation, the Atane Formation (including four new members – the Skansen, Ravn Kløft, Kingittoq and Qilakitsoq Members – and one new bed, the Itivnera Bed), the Itilli Formation (new, including four new members, the Anariartorfik, Umiivik, Kussinerujuk and Aaffarsuaq Members), the Kangilia Formation (including the redefined Annertuneq Conglomerate Member and the new Oyster–Ammonite Conglomerate Bed), the Quikavsak Formation (including three new members: the Tupaasat, Nuuk Qiterleq and Paatuutkløften Members), the Agatdal Formation, the Eqalulik Formation (new, including the Abraham Member), and the Atanikerluk Formation (including five members: the Naujât, Akunneq (new), Pingu (new), Umiussat and Assoq (new) Members)

    Provenance of Cretaceous and Paleocene sandstones in the West Greenland basins based on detrital zircon dating

    Get PDF
    The extensive and very deep ?Jurassic/Cretaceous–Palaeogene sedimentary basins offshore West Greenland have a significant petroleum exploration potential. This is particularly true for the offshore region west of Disko and Nuussuaq where a live petroleum system has been documented for many years. At present, stratigraphic knowledge in this area is almost nonexistent and analogue studies from onshore areas and offshore exploration wells to the south are therefore crucial to understanding the distribution and quality of possible reservoir rocks in the Disko–Nuussuaq offshore area. One of the main risk parameters in petroleum exploration in this region is the presence of an adequate reservoir rock. Tectonostratigraphic considerations suggest that several sand-prone stratigraphic levels are probably present, but their provenance and reservoir quality are at present poorly known both onshore and offshore. A sediment provenance study including zircon provenance U-Pb dating and wholerock geochemical analysis was therefore initiated by the Geological Survey of Denmark and Greenland (GEUS) in preparation for the Disko West Licensing Round 2006 (Scherstén et al. 2007). The main aims of this study were to: 1. Characterise the source areas and dispersal patterns for the various sandstone units of Cretaceous–Paleocene age in the Nuussuaq Basin and compare these with sandstone units in selected West Greenland offshore exploration wells (Figs 1, 2), employing advanced zircon provenance U-Pb dating using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS; cf. Frei et al. 2006). 2. Detect possible changes in sediment source with time, e.g. local versus regional sources. Zircon as a provenance tool is receiving increasing attention and has proven to be a powerful indicator of clastic sediment sources, a tracer of the Earth’s oldest materials, and a tracer of continental crust-forming processes (Froude et al. 1983; Williams & Claesson 1987; Dodson et al. 1988; Fedo et al. 2003; Hawkesworth & Kemp 2006). Zircon is common in continental rocks and it is assumed that its distribution in sediments will normally represent the source rocks. Although there are several complications, the sediment zircon U-Pb age frequency should in general terms mirror the relative proportions of different source materials. This assumption is particularly important if exotic components can be identified, as their frequency will provide an estimate of the exotic influx: it may also be essential in tracing sediment paths that affect the detrital compositions and subsequent diagenetic history of possible hydrocarbon reservoir rocks

    East Greenland Caledonides: stratigraphy, structure and geochronology: The Neoproterozoic Rivieradal Group of Kronprins Christian Land, eastern North Greenland

    No full text
    The Rivieradal Group, formally defined here, is confined to the Vandredalen thrust sheet of the Caledonian orogen in Kronprins Christian Land, eastern North Greenland. It comprises a successionof Neoproterozoic siliciclastic sediments that represent the fill of a half-graben basin. The syn-rift Rivieradal Group is overlain by post-rift sediments of the Hagen Fjord Group. The latter succession is present in both the thrust sheet and the Caledonian foreland to the west. In the foreland, where the Rivieradal Group is not represented, the Hagen Fjord Group disconformably overlies Palaeoproterozoic–Mesoproterozoic sandstones of the IndependenceFjord Group

    The north atlantic provenance database : An introduction

    Get PDF
    The amount of provenance information available for onshore and offshore sedimentary deposits in the North Atlantic Region is substantial and rapidly increasing. These data provide an improved understanding of reservoir geology (quality, diagenetic issues, regional source-to-sink relations and local stratigraphic correlations), and thereby can reduce hydrocarbon exploration risk. As such, the number of proprietary, industry-related and public research provenance studies has increased considerably in recent years, and the development and use of new analytical techniques has also caused a surge in the number of grains, isotopes and chemical elements analysed in each study. As a result, it is today close to impossible for the individual researcher or petroleum geologist to draw on all existing provenance data. And the vast expansion of data availability demands new and better methods to analyse and visualise large amounts of data in a systematic way To this end, the Geological Survey of Denmark and Greenland (GEUS) and the Norwegian Petroleum Directorate (NPD) have established a web-based database of provenance data for the North Atlantic area: the North Atlantic Provenance Database. Construction of the database was funded jointly by GEUS and NPD. Future maintenance and further development will be funded by the petroleum industry by subscription to the database. Here, we provide a brief introduction to the database and its future development and expansion. We highlight the current capabilities with an example from East Greenland.&nbsp

    Petroleum systems and structures offshore central West Greenland: implications for hydrocarbon prospectivity

    Get PDF
    A detailed geophysical mapping project has been carried out by the Geological Survey of Denmark and Greenland (GEUS) in the offshore region south-west and west of Disko and Nuussuaq, central West Greenland as part of the preparations for the Disko West Licensing Round in 2006 (Fig. 1). The main purpose of the study was to evaluate the prospectivity of this almost 100 000 km2 large region, and to increase knowledge of basin evolution and the structural development. Results of the work, including a new structural elements map of the region and highlights of particular interest for hydrocarbon exploration of this area, are summarised below. Evidence of live petroleum systems has been recognised in the onshore areas since the beginning of the 1990s when seeps of five different oil types were demonstrated (Bojesen-Koefoed et al. 1999). Oil seeps suggesting widely distributed marine source rocks of Mesozoic age are particularly promising for the exploration potential (Bojesen-Koefoed et al. 2004, 2007). Furthermore, possible DHIs (Direct Hydro carbon Indicators) such as gas-clouds, pock marks, bright spots and flat events have been interpreted in the offshore region (Skaarup et al. 2000; Gregersen & Bidstrup in press). The evaluation of the region (Fig. 1) is based on all public and proprietary seismic data together with public domainmagnetic and gravity data. The seismic data (a total of c. 28 000 line km) are tied to the two existing offshore exploration wells in the region (Hellefisk-1 and Ikermiut-1). The study also incorporates information on sediments and volcanic rocks from onshore Disko and Nuussuaq (Fig. 2). Ten seismic horizons ranging from ‘mid-Cretaceous’ to ‘Base Quaternary’ (Fig. 2) have been interpreted regionally. Large correlation distances to wells, varying data quality and a thick cover of basalt in the north-eastern part of the region, add uncertainty in the regional interpretation, especially for the deeper horizons such as the ‘mid-Cretaceous’ equivalent to Santonian sandstone interval drilled in Qulleq-1 far south. Based on the seismic interpretation (Fig. 3) structural elements maps, horizon-depth maps and isopach maps have been produced; these maps, together with general stratigraphic knowledge on potential reservoirs, seals and source rocks (Fig. 2), provide important information for discussions of critical play elements including kitchens and structures.The existence of many large structures combined with the evidence of live petroleum systems has spurred the recent major interest for hydrocarbon exploration in the region
    corecore