1,201 research outputs found

    Designing Gabor windows using convex optimization

    Full text link
    Redundant Gabor frames admit an infinite number of dual frames, yet only the canonical dual Gabor system, constructed from the minimal l2-norm dual window, is widely used. This window function however, might lack desirable properties, e.g. good time-frequency concentration, small support or smoothness. We employ convex optimization methods to design dual windows satisfying the Wexler-Raz equations and optimizing various constraints. Numerical experiments suggest that alternate dual windows with considerably improved features can be found

    Wave Chaos in Elastodynamic Cavity Scattering

    Full text link
    The exact elastodynamic scattering theory is constructed to describe the spectral properties of two- and more-cylindrical cavity systems, and compared to an elastodynamic generalization of the semi-classical Gutzwiller unstable periodic orbits formulas. In contrast to quantum mechanics, complex periodic orbits associated with the surface Rayleigh waves dominate the low-frequency spectrum, and already the two-cavity system displays chaotic features.Comment: 7 pages, 5 eps figures, latex (with epl.cls

    Beretning fra Statskonsulent.

    Get PDF
    Beretning fra Statskonsulent

    The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray

    Get PDF
    AbstractThe research field of extracellular vesicles (EVs) is increasing immensely and the potential uses of EVs seem endless. They are found in large numbers in various body fluids, and blood samples may well serve as liquid biopsies. However, these small membrane-derived entities of cellular origin are not straightforward to work with in regard to isolation and characterization.A broad range of relevant preanalytical issues was tested, with a focus on the phenotypic impact of smaller EVs. The influences of the i) blood collection tube used, ii) incubation time before the initial centrifugation, iii) transportation/physical stress, iv) storage temperature and time (short term and long term), v) choice of centrifugation protocol, vi) freeze-thaw cycles, and vii) exosome isolation procedure (ExoQuick™) were examined. To identify the impact of the preanalytical treatments, the relative amounts (detected signal intensities of CD9-, CD63- and/or CD81-positive) and phenotypes of small EVs were analyzed using the multiplexed antibody-based microarray technology, termed the EV Array. The analysis encompassed 15 surface- or surface-related markers, including CD9, CD63, CD81, CD142, and Annexin V.This study revealed that samples collected in different blood collection tubes suffered to varying degrees from the preanalytical treatments tested here. There is no unequivocal answer to the questions asked. However, in general, the period of time and prospective transportation before the initial centrifugation, choice of centrifugation protocol, and storage temperature were observed to have major impacts on the samples. On the contrary, long-term storage and freeze-thawing seemed to not have a critical influence. Hence, there are pros and cons of any choice regarding sample collection and preparation and may very well be analysis dependent. However, to compare samples and results, it is important to ensure that all samples are of the same type and have been handled similarly

    A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites

    Get PDF
    Contaminated sites pose a significant threat to groundwater resources. The resources that can be allocated by water regulators for site investigation and cleanup are limited compared to the large number of contaminated sites. Numerical transport models of individual sites require large amounts of data and are labor intensive to set up, and thus they are likely to be too expensive to be useful in the management of thousands of contaminated sites. Therefore, simple tools based on analytical solutions of contaminant transport models are widely used to assess (at an early stage) whether a site might pose a threat to groundwater. We present a tool consisting of five different models, representing common geological settings, contaminant pathways, and transport processes. The tool employs a simplified approach for preliminary, conservative, fast and inexpensive estimation of the contamination levels of aquifers. This is useful for risk assessment applications or to select and prioritize the sites, which should be targeted for further investigation. The tool is based on steady-state semi-analytical models simulating different contaminant transport scenarios from the source to downstream groundwater, and includes both unsaturated and saturated transport processes. The models combine existing analytical solutions from the literature for vertical (from the source to the top of the aquifer) and horizontal (within the aquifer) transport. The effect of net recharge causing a downward migration and an increase of vertical dispersion and dilution of the plume is also considered. Finally, we illustrate the application of the tool for a preliminary assessment of two contaminated sites in Denmark and compare the model results with field data. The comparison shows that a first preliminary assessment with conservative, and often non-site specific parameter selection, is qualitatively consistent with broad trends in observations and provides a conservative estimate of contamination.Peer ReviewedPostprint (author's final draft
    • …
    corecore