439 research outputs found
Broad synergistic antiviral efficacy between a novel elite controller-derived dipeptide and antiretrovirals against drug-resistant HIV-1
IntroductionThe naturally occurring dipeptide Tryptophylglycine (WG) is enhanced in human immunodeficiency virus (HIV-1) infected Elite Controllers (EC). We have shown that this dipeptide has an anti-HIV-1 effect and evaluated now its synergistic antiretroviral activity, in combination with current antiretrovirals against multi-drug resistant HIV-1 isolates.MethodsDrug selectivity assay with WG-am and ARVs agains HIV-1 resistant isolates were carried out. Subsequently, two methods, Chou-Talalay’s Combination Index (CI) and ZIP synergy score (SS), were used to quantify the synergism.ResultsWG-am had a moderate/strong synergism with the four tested antiretrovirals: raltegravir, tenofovir, efavirenz, darunavir. WG-am:TDF had strong synergism at ED50, ED75, ED90 (CI: <0.2) in isolates resistant to protease inhibitors or integrase strand inhibitors (INSTI), and a slightly less synergism in isolates resistant to non-nucleoside or nucleotide reverse transcriptase inhibitors. WG-am combined with each of the four drugs inhibited all drug-resistant isolates with over 95% reduction at maximum concentration tested. The highest selectivity indexes (CC50/ED50) were in INSTI-resistant isolates.ConclusionOur data suggest that WG, identified as occurring and enhanced in Elite Controllers has a potential to become a future treatment option in patients with HIV-1 strains resistant to any of the four major categories of anti-HIV-1 compounds
Impact of HMGB1/TLR Ligand Complexes on HIV-1 Replication: Possible Role for Flagellin during HIV-1 Infection
Objective. We hypothesized that HMGB1 in complex with bacterial components, such as flagellin, CpG-ODN, and LPS, promotes HIV-1 replication. Furthermore, we studied the levels of antiflagellin antibodies during HIV-1-infection. Methods. Chronically HIV-1-infected U1 cells were stimulated with necrotic extract/recombinant HMGB1 in complex with TLR ligands or alone. HIV-1 replication was estimated by p24 antigen in culture supernatants 48–72 hours after stimulation. The presence of systemic anti-flagellin IgG was determined in 51 HIV-1-infected patients and 19 controls by immunoblotting or in-house ELISA. Results. Flagellin, LPS, and CpG-ODN induced stronger HIV-1 replication when incubated together with necrotic extract or recombinant HMGB1 than activation by any of the compounds alone. Moreover, the stimulatory effect of necrotic extract was inhibited by depletion of HMGB1. Elevated levels of anti-flagellin antibodies were present in plasma from HIV-1-infected patients and significantly decreased during 2 years of antiretroviral therapy. Conclusions. Our findings implicate a possible role of HGMB1-bacterial complexes, as a consequence of microbial translocation and cell necrosis, for immune activation in HIV-1 pathogenesis. We propose that flagellin is an important microbial product, that modulates viral replication and induces adaptive immune responses in vivo
Characterization of Inducible Transcription and Translation-Competent HIV-1 Using the RNAscope ISH Technology at a Single-Cell Resolution
Identifying the source and dynamics of persistent HIV-1 at single-cell resolution during cART is crucial for the design of strategies to eliminate the latent HIV-1 reservoir. An assay to measure latent HIV-1 that can distinguish inducible from defective proviruses with high precision is essential to evaluate the efficacy of HIV-1 cure efforts but is presently lacking. The primary aim of this study was therefore to identify transcription and translation competent latently infected cells through detection of biomolecules that are dependent on transcriptional activation of the provirus. We investigated the applicability of two commercially available assays; PrimeFlowTM RNA Assay (RNAflow) and RNAscope® ISH (RNAscope) for evaluation of the efficacy of latency reversal agents (LRAs) to reactivate the HIV-1 latent reservoir. The J-Lat cell model (clones 6.3, 9.3, and 10.6) and four LRAs was used to evaluate the sensitivity, specificity, and lower detection limit of the RNAflow and RNAscope assays for the detection and description of the translation-competent HIV-1 reservoir. We also checked for HIV-1 subtype specificity of the RNAscope assay using patient-derived subtype A1, B, C, and CRF01_AE recombinant plasmids following transfection in 293T cells and the applicability of the method in patient-derived peripheral blood mononuclear cells (PBMCs). The lower detection limit of RNAflow was 575 HIV-1 infected cells/million and 45 cells/million for RNAscope. The RNAscope probes, designed for HIV-1B, also detected other subtypes (A1, B, C, and CRF01_AE). RNAscope was applicable for the detection of HIV-1 in patient-derived PBMCs following LRA activation. In conclusion, our study showed that RNAscope can be used to quantify the number of directly observed individual cells expressing HIV-1 mRNA following LRA activation. Therefore, it can be a useful tool for characterization of translation-competent HIV-1 in latently infected cell at single-cell resolution in the fields of HIV-1 pathogenesis and viral persistence
Increased telomere attrition following renal transplantation: impact of anti-metabolite therapy
Background: The uremic milieu exposes chronic kidney disease (CKD) patients to premature ageing processes. The impact of renal replacement therapy (dialysis and renal transplantation [RTx]) or immunosuppressive treatment regimens on ageing biomarkers has scarcely been studied.
Methods: In this study telomere length in whole blood cells was measured in 49 dialysis patients and 47 RTx patients close to therapy initiation and again after 12 months. Forty-three non-CKD patients were included as controls.
Results: Non-CKD patients had significantly (P <= 0.01) longer telomeres than CKD patients. Telomere attrition after 12 months was significantly greater in RTx patients compared to dialysis patients (P = 0.008). RTx patients receiving mycophenolate mofetil (MMF) had a greater (P = 0.007) degree of telomere attrition compared to those treated with azathioprine. After 12 months, folate was significantly higher in RTx patients than in dialysis patients (P < 0.0001), whereas the opposite was true for homocysteine (P < 0.0001). The azathioprine group had lower levels of folate after 12 months than the MMF group (P = 0.003).
Conclusions: The associations between immunosuppressive therapy, telomere attrition, and changes in folate indicate a link between methyl donor potential, immunosuppressive drugs, and biological ageing. The hypothesis that the increased telomere attrition, observed in the MMF group after RTx, is driven by the immunosuppressive treatment, deserves further attention
Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals.
HIV-specific CD8+ T cells demonstrate an exhausted phenotype associated with increased expression of inhibitory receptors, decreased functional capacity, and a skewed transcriptional profile, which are only partially restored by antiretroviral treatment (ART). Expression levels of the inhibitory receptor, T cell immunoglobulin and ITIM domain (TIGIT), the co-stimulatory receptor CD226 and their ligand PVR are altered in viral infections and cancer. However, the extent to which the TIGIT/CD226/PVR-axis is affected by HIV-infection has not been characterized. Here, we report that TIGIT expression increased over time despite early initiation of ART. HIV-specific CD8+ T cells were almost exclusively TIGIT+, had an inverse expression of the transcription factors T-bet and Eomes and co-expressed PD-1, CD160 and 2B4. HIV-specific TIGIThi cells were negatively correlated with polyfunctionality and displayed a diminished expression of CD226. Furthermore, expression of PVR was increased on CD4+ T cells, especially T follicular helper (Tfh) cells, in HIV-infected lymph nodes. These results depict a skewing of the TIGIT/CD226 axis from CD226 co-stimulation towards TIGIT-mediated inhibition of CD8+ T cells, despite early ART. These findings highlight the importance of the TIGIT/CD226/PVR axis as an immune checkpoint barrier that could hinder future "cure" strategies requiring potent HIV-specific CD8+ T cells
Natural killer cells induce HIV-1 latency reversal after treatment with pan-caspase inhibitors
The establishment of a latency reservoir is the major obstacle for a cure of HIV-1. The shock-and-kill strategy aims to reactivate HIV-1 replication in HIV -1 latently infected cells, exposing the HIV-1-infected cells to cytotoxic lymphocytes. However, none of the latency reversal agents (LRAs) tested so far have shown the desired effect in people living with HIV-1. We observed that NK cells stimulated with a pan-caspase inhibitor induced latency reversal in co-cultures with HIV-1 latently infected cells. Synergy in HIV-1 reactivation was observed with LRAs prostratin and JQ1. The supernatants of the pan-caspase inhibitor-treated NK cells activated the HIV-1 LTR promoter, indicating that a secreted factor by NK cells was responsible for the HIV-1 reactivation. Assessing changes in the secreted cytokine profile of pan-caspase inhibitor-treated NK cells revealed increased levels of the HIV-1 suppressor chemokines MIP1α (CCL3), MIP1β (CCL4) and RANTES (CCL5). However, these cytokines individually or together did not induce LTR promoter activation, suggesting that CCL3-5 were not responsible for the observed HIV-1 reactivation. The cytokine profile did indicate that pan-caspase inhibitors induce NK cell activation. Altogether, our approach might be–in combination with other shock-and-kill strategies or LRAs–a strategy for reducing viral latency reservoirs and a step forward towards eradication of functionally active HIV-1 in infected individuals
Cohort Profile: A European Multidisciplinary Network for the Fight against HIV Drug Resistance (EuResist Network)
: The EuResist cohort was established in 2006 with the purpose of developing a clinical decision-support tool predicting the most effective antiretroviral therapy (ART) for persons living with HIV (PLWH), based on their clinical and virological data. Further to continuous extensive data collection from several European countries, the EuResist cohort later widened its activity to the more general area of antiretroviral treatment resistance with a focus on virus evolution. The EuResist cohort has retrospectively enrolled PLWH, both treatment-naïve and treatment-experienced, under clinical follow-up from 1998, in nine national cohorts across Europe and beyond, and this article is an overview of its achievement. A clinically oriented treatment-response prediction system was released and made available online in 2008. Clinical and virological data have been collected from more than one hundred thousand PLWH, allowing for a number of studies on the response to treatment, selection and spread of resistance-associated mutations and the circulation of viral subtypes. Drawing from its interdisciplinary vocation, EuResist will continue to investigate clinical response to antiretroviral treatment against HIV and monitor the development and circulation of HIV drug resistance in clinical settings, along with the development of novel drugs and the introduction of new treatment strategies. The support of artificial intelligence in these activities is essential
Rebound of residual plasma viremia after initial decrease following addition of intravenous immunoglobulin to effective antiretroviral treatment of HIV
<p>Abstract</p> <p>Background</p> <p>High dosage of intravenous immunoglobulin (IVIG) has been observed as a possible activator of HIV gene expression in latently infected resting CD4<sup>+ </sup>T-cells, leading to a substantial decrease in both the reservoir and the residual plasma viremia when added to effective ART. IVIG treatment has also been reported to expand T regulatory cells (Tregs). The aim of this study was to evaluate possible long-term effect of IVIG treatment on residual viremia and T-lymphocyte activation.</p> <p>Methods</p> <p>Nine HIV-infected subjects on effective ART included in a previously reported study on IVIG treatment were evaluated 48-104 weeks after therapy. In addition, 14 HIV-infected controls on suppressive ART were included. HIV-1 RNA was analyzed in cell-free plasma by using an ultrasensitive PCR-method with a detection limit of 2 copies/mL. T-lymphocyte activation markers and serum interleukins were measured.</p> <p>Results</p> <p>Plasma residual viremia rebounded to pre-treatment levels, 48-104 weeks after the initial decrease that was observed following treatment with high-dosage IVIG. No long-term effect was observed regarding T-lymphocyte activation markers, T-regulatory cells or serum interleukins. In a post-hoc analysis, a correlation between plasma HIV-1-RNA and CD4<sup>+ </sup>T-cell count was found in both IVIG-treated patients and controls.</p> <p>Conclusions</p> <p>These results indicate that the decrease in the latent HIV-1 pool observed during IVIG treatment is transient. Although not our primary objective, we found a correlation between HIV-1 RNA and CD4<sup>+ </sup>T-cell count suggesting the possibility that patients with a higher CD4<sup>+ </sup>T-cell count might harbor a larger residual pool of latently infected CD4<sup>+ </sup>T-cells.</p
Generating Synthetic Clinical Data that Capture Class Imbalanced Distributions with Generative Adversarial Networks: Example using Antiretroviral Therapy for HIV
Clinical data usually cannot be freely distributed due to their highly
confidential nature and this hampers the development of machine learning in the
healthcare domain. One way to mitigate this problem is by generating realistic
synthetic datasets using generative adversarial networks (GANs). However, GANs
are known to suffer from mode collapse thus creating outputs of low diversity.
This lowers the quality of the synthetic healthcare data, and may cause it to
omit patients of minority demographics or neglect less common clinical
practices. In this paper, we extend the classic GAN setup with an additional
variational autoencoder (VAE) and include an external memory to replay latent
features observed from the real samples to the GAN generator. Using
antiretroviral therapy for human immunodeficiency virus (ART for HIV) as a case
study, we show that our extended setup overcomes mode collapse and generates a
synthetic dataset that accurately describes severely imbalanced class
distributions commonly found in real-world clinical variables. In addition, we
demonstrate that our synthetic dataset is associated with a very low patient
disclosure risk, and that it retains a high level of utility from the ground
truth dataset to support the development of downstream machine learning
algorithms.Comment: In the near future, we will make our codes and synthetic datasets
publicly available to facilitate future research. Follow us on
https://healthgym.ai
- …