25 research outputs found

    Estrogen-Receptor Expression and Function in Thymocytes in Relation to Gender and Age

    Get PDF
    The expression of estrogen receptor (ER) in thymocytes was studied in young, middle-aged, and old (2, 12, and 24 months, respectively) female and male C57BL/6J mice. Western immunoblots prepared from the thymocytes of females of all age groups showed the presence of a 67-kD protein band, which has been associated with the apparent MW of denatured ER. Flow cytometry analysis o,f cells stained with a monoclonal anti-ER antibody (clone 13H2) disclosed ER expression in both females and males of all age groups. In vivo treatment with estradiol (E2) led to an increase in the specific activity of thymic creatine kinase (CK) in the female mice, whereas the male thymocytes responded with an increase in CK activity only on treatment with dihydrotestosterone (DHT). The data show no differences in ER expression between male and females, but the receptor appears not to be functional in males. Interestingly, when estradiol was applied to co-cultures of lymphoid-depleted fetal thymus (FT) explants and bone-marrow cells, or thymocytes, from young and old females, it resulted in increased cellularity of cultures containing cells of the young, and not those of the old. The proportion of CD4/CD8 phenotypes of the developing cells in these cultures was not affected by E2 treatment. These observations provide a new insight into ER expression and function in T-cell development in relation to gender and age

    The induction of lamellar stacking by cholesterol in lecithin-bile salt model systems and human bile studied by synchrotron X-radiation

    No full text
    Small angle X-ray scattering (SAXS) with synchroton radiation was used to investigate interactions among lipid particles in lecithin-bile salt model systems and in native gallbladder biles. In model systems in the absence of cholesterol. isotropic, continuous spectra were found, indicating the absence of periodic structures. In the presence of excess cholesterol, interaction in the form of lamellar stacking was detected by the appearance of discrete diffraction peaks. In the supersaturated cholesterol region of the commonly accepted phase diagram [1]. where cholesterol crystals were expected. we found lamellar stacking. The high proportion of cholesterol to bile salts seems to be the common denominator of these models. The lamellar stacking was also found in native unprocessed bile. This effect of cholesterol on lipid structure has not been previously described. Lamellar stacking may contribute to cholesterol solubilization. Its influence on the kinetics of cholesterol crystallization is presently unknown
    corecore