3 research outputs found

    Pleiotropic effects in Eya3 knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Drosophila</it>, mutations in the gene <it>eyes absent </it>(<it>eya</it>) lead to severe defects in eye development. The functions of its mammalian orthologs <it>Eya1-4 </it>are only partially understood and no mouse model exists for <it>Eya3</it>. Therefore, we characterized the phenotype of a new <it>Eya3 </it>knockout mouse mutant.</p> <p>Results</p> <p>Expression analysis of <it>Eya3 </it>by <it>in-situ </it>hybridizations and β-Gal-staining of <it>Eya3 </it>mutant mice revealed abundant expression of the gene throughout development, e.g. in brain, eyes, heart, somites and limbs suggesting pleiotropic effects of the mutated gene. A similar complex expression pattern was observed also in zebrafish embryos.</p> <p>The phenotype of young adult <it>Eya3 </it>mouse mutants was systematically analyzed within the German Mouse Clinic. There was no obvious defect in the eyes, ears and kidneys of <it>Eya3 </it>mutant mice. Homozygous mutants displayed decreased bone mineral content and shorter body length. In the lung, the tidal volume at rest was decreased, and electrocardiography showed increased JT- and PQ intervals as well as decreased QRS amplitude. Behavioral analysis of the mutants demonstrated a mild increase in exploratory behavior, but decreased locomotor activity and reduced muscle strength. Analysis of differential gene expression revealed 110 regulated genes in heart and brain. Using real-time PCR, we confirmed <it>Nup155 </it>being down regulated in both organs.</p> <p>Conclusion</p> <p>The loss of <it>Eya3 </it>in the mouse has no apparent effect on eye development. The wide-spread expression of <it>Eya3 </it>in mouse and zebrafish embryos is in contrast to the restricted expression pattern in <it>Xenopus </it>embryos. The loss of <it>Eya3 </it>in mice leads to a broad spectrum of minor physiological changes. Among them, the mutant mice move less than the wild-type mice and, together with the effects on respiratory, muscle and heart function, the mutation might lead to more severe effects when the mice become older. Therefore, future investigations of <it>Eya3 </it>function should focus on aging mice.</p
    corecore