100 research outputs found
Purinergic Signalling in Immune System Regulation in Health and Disease
The concept of a purinergic signalling system was first proposed by Professor Geoffrey Burnstock over 30 years ago. This includes the cellular responses to purine nucleotides, such as ATP, and nucleosides, such as adenosine, that act as extracellular messengers playing a role through specific nucleotide and adenosine receptors in all systems. Indeed, in addition to their role in cellular metabolism, nucleotides as well as nucleosides are extracellular mediators that activate biological responses in all cells. Cells subjected to activation or shear or mechanical stress release nucleotides such as ATP, ADP, UTP, and UDP in large amounts. All cells can release nucleotides in a controlled fashion [1]. The mechanisms of nucleotide release have been the focus of intense research activities but are still not fully understood. While activated platelets and neurons release nucleotides by exocytosis, neutrophils, and T lymphocytes use pannexin-1 hemichannels for nucleotide efflux, some cells also constitutively release nucleotides
Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8
Nucleoside triphosphate diphosphohydrolases 1, 2, 3 and 8 (NTPDases 1, 2, 3 and 8) are the dominant ectonucleotidases and thereby expected to play important roles in nucleotide signaling. Distinct biochemical characteristics of individual NTPDases should allow them to regulate P2 receptor activation differentially. Therefore, the biochemical and kinetic properties of these enzymes were compared. NTPDases 1, 2, 3 and 8 efficiently hydrolyzed ATP and UTP with Km values in the micromolar range, indicating that they should terminate the effects exerted by these nucleotide agonists at P2X1- and P2Y2,4,11 receptors. Since NTPDase1 does not allow accumulation of ADP, it should terminate the activation of P2Y1,12,13 receptors far more efficiently than the other NTPDases. In contrast, NTPDases 2, 3 and 8 are expected to promote the activation of ADP specific receptors, because in the presence of ATP they produce a sustained (NTPDase2) or transient (NTPDases 3 and 8) accumulation of ADP. Interestingly, all plasma membrane NTPDases dephosphorylate UTP with a significant accumulation of UDP, favoring P2Y6 receptor activation. NTPDases differ in divalent cation and pH dependence, although all are active in the pH range of 7.0-.5. Various NTPDases may also distinctly affect formation of extracellular adenosine and therefore adenosine receptor-mediated responses, since they generate different amounts of the substrate (AMP) and inhibitor (ADP) of ecto-5-nucleotidase, the rate limiting enzyme in the production of adenosine. Taken together, these data indicate that plasma membrane NTPDases hydrolyze nucleotides in a distinctive manner and may therefore differentially regulate P2 and adenosine receptor signaling
Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer
Extracellular ATP hydrolysis in Caco-2 human intestinal cell line
Extracellular nucleotides and nucleosides activate signaling pathways that play major roles in the physiology and pathophysiology of the gastrointestinal tract. Ectonucleotidases hydrolyze extracellular nucleotides and thus regulate ligand exposure to purinergic receptors. In this study, we investigated the expression, localization and activities of ectonucleotidases using Caco-2 cells, a model of human intestinal epithelial cells. In addition, by studying ATP release and the rates of extracellular ATP (eATP) hydrolysis, we analyzed the contribution of these processes to the regulation of eATP in these cells. Results show that Caco-2 cells regulate the metabolism of eATP and by-products by ecto-nucleoside triphosphate diphosphohydrolase-1 and -2, a neutral ecto-phosphatase and ecto-5′-nucleotidase. All these ectoenzymes were kinetically characterized using intact cells, and their presence confirmed by denatured and native gels, western blot and cytoimmunofluorescence techniques. In addition, regulation of eATP was studied by monitoring the dynamic balance between intracellular ATP release and ectoATPase activity. Following mechanical and hypotonic stimuli, Caco-2 cells triggered a strong but transient release of intracellular ATP, with almost no energy cost, leading to a steep increase of eATP concentration, which was later reduced by ectoATPase activity. A data-driven algorithm allowed quantifying and predicting the rates of ATP release and ATP consumption contributing to the dynamic accumulation of ATP at the cell surface.Fil: Schachter, Julieta. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Alvarez, Cora Lilia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Bazzi, Zaher. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Faillace, Maria Paula. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂa y BiofĂsica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂa y BiofĂsica Bernardo Houssay; ArgentinaFil: Corradi, Gerardo Raul. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Hattab, C.. Universite de Paris. Institut National de la Transfusion Sanguine.; FranciaFil: Rinaldi, Debora Eugenia. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Gonzalez-Lebrero, Rodolfo Martin. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; ArgentinaFil: Pucci Molineris, Melisa Eliana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BioquĂmicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias MĂ©dicas. Instituto de Investigaciones BioquĂmicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: SĂ©vigny, J.. Laval University; CanadáFil: Ostuni, M. A.. Universite de Paris; Francia. Universite Paris D. Diderot - Paris 7. French National Institute Of Blood Transfusion.; FranciaFil: Schwarzbaum, Pablo Julio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂmica. Instituto de QuĂmica y FĂsico-QuĂmica BiolĂłgicas; Argentin
Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function
In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αβMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials
Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin
The protein family of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase family) contains multiple members that hydrolyze nucleoside 5’-triphosphates and nucleoside 5’-diphosphates with varying preference for the individual type of nucleotide. We report the cloning and functional expression of rat NTPDase3. The rat brain-derived cDNA has an open reading frame of 1590 bp encoding 529 amino acid residues, a calculated molecular mass of 59.1 kDa and predicted N- and C-terminal hydrophobic sequences. It shares 94.3% and 81.7% amino acid identity with the mouse and human NTPDase3, respectively, and is more closely related to cell surface-located than to the intracellularly located members of the enzyme family. The NTPDase3 gene is allocated to chromosome 8q32 and organized into 11 exons. Rat NTPDase3 expressed in CHO cells hydrolyzed both nucleoside triphosphates and nucleoside diphosphates with hydrolysis ratios of ATP:ADP of 5:1 and UTP:UDP of 8:1. After addition of ATP, ADP is formed as an intermediate product that is further hydrolyzed to AMP. The enzyme is preferentially activated by Ca2+ over Mg2+ and reveals an alkaline pH optimum. Immunocytochemistry confirmed expression of heterologously expressed NTPDase3 to the surface of CHO cells. PC12 cells express endogenous surface-located NTPDase3. An immunoblot analysis detects NTPDase3 in all rat brain regions investigated. An alignment of the secondary structure domains of actin conserved within the actin/HSP70/sugar kinase superfamily to those of all members of the NTPDase family reveals apparent similarity. It infers that NTPDases share the two-domain structure with members of this enzyme superfamily
Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases)
Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM)
Species composition and habitat preferences of the nearshore fish fauna of Bonne Bay, Newfoundland
Determining biodiversity baseline is the first step toward establishing species monitoring and conservation programs. In this study we report on a 10-year survey of the fish fauna of Bonne Bay, a fjord surrounded by the Gros Morne National Park on the west coast of Newfoundland, Canada. The objectives of our study were: 1) to determine the fish fauna of Bonne Bay using standardized sampling methods; 2) to gather information on the habitats of fishes of conservation concern; and 3) to provide baseline information on Bonne Bay as a potential candidate for a National Marine Conservation Area (NMCA).
Methods
A survey of the fish fauna of the inner Bonne Bay was conducted each summer from 2002 to 2011 at multiple sites representing a range of fish habitats within the fjord. Sampling gears included two types of beach seine, gillnets with various mesh sizes and a bottom trawl. Species composition was statistically compared across sites within the fjord.
Results
We collected and identified 29 fish species from 17 families. Fish assemblages comprised anadromous, estuarine, and marine fish species, including a late-maturing type of winter skate (Leucoraja ocellata) that is rarely found in the adjacent waters of the northern Gulf of St. Lawrence. Similarity in species composition across sites reflected salinity, substrate composition, and presence of eelgrass (Zostera marina), but not the geographic distance between sites.
Conclusions
Bonne Bay’s adjacency to a United Nations Educational, Scientific, and Cultural Organization (UNESCO) World Heritage Site, its diverse fish fauna that includes several species of conservation concern, its potential for education and enjoyment, and its stewardship by local people are suggestive of the future candidacy as a NMCA. The data presented here will help managers assess the potential of Bonne Bay as a National Marine Conservation Area
- …