2 research outputs found

    On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest

    No full text
    a b s t r a c t We present a review of more than 30 years of ecological restoration in the Brazilian part of the Atlantic Forest. Based on what has been done in this biome, we try to summarize the main findings and challenges for restoration in this highly threatened forest biome. We found that many past experiences did not result in self-perpetuating forests, for different reasons. Currently, most projects aim to construct self-sustaining communities and no longer see restoration as a deterministic process. We also found that the reconstruction of permanent forest with high diversity is feasible but it depends on the strategies applied and on the surrounding landscape. Although many new techniques have been created (e.g. seed rain management or promotion of natural regeneration), the most used one in the Atlantic Forest is still the planting of many native species from different functional groups. Native species are largely used and perform well even in highly disturbed environments. Today, many projects are trying to produce thousands of hectares of permanent forests and many technical advances are about to be incorporated. But restoration also faces some main challenges to become an effective and widespread means of conserving the Atlantic Forest which are, namely, reducing costs, planning restoration actions at landscape-level, and conforming to socio-political issues. The socio-political tools to overcome such barriers in practice have yet to be developed

    Improving methods in gap ecology: Revisiting size and shape distributions using a model selection approach

    No full text
    Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science
    corecore