23 research outputs found

    Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation.

    Get PDF
    Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1

    The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions.

    Get PDF
    Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs

    ETV6-RUNX1 and RUNX1 directly regulate RAG1 expression: one more step in the understanding of childhood B-cell acute lymphoblastic leukemia leukemogenesis.

    Get PDF
    Funder: SociĂ©tĂ© Française de Biochimie et Biologie MolĂ©culaire ; French Research MinistryFunder: CancĂ©ropole Grand Ouest ; RĂ©gion Bretagne ; SociĂ©tĂ© Française d’HĂ©matologieFunder: Ligue RĂ©gionale contre le cancer ;ETV6-RUNX1 and RUNX1 directly promote RAG1 expression. ETV6-RUNX1 and RUNX1 preferentially bind to the −1200 bp enhancer of RAG1 and the −80 bp promoter of RAG1 gene respectively, and compete for these bindings. ETV6-RUNX1 and RUNX1 induce an excessive RAG recombinase activity. ETV6-RUNX1 participates directly in two events of the multi-hit ALL leukemogenesis: as an initiating event and as an activator of RAG1 expression

    Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia.

    Get PDF
    Funder: FP7 People: Marie-Curie Actions; doi: http://dx.doi.org/10.13039/100011264; Grant(s): 291851BACKGROUND: B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia. METHODS: We worked with BCP-ALL mononuclear bone marrow patients' cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models. RESULTS: We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients' cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located - 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation. CONCLUSIONS: Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein

    5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system

    No full text
    International audienceThe epigenetic mark 5-hydroxymethylcytosine (5hmC) is a cytosine modification that is abundant in the central nervous system of mammals and which results from 5-methylcytosine oxidation by TET enzymes. Such a mark is suggested to play key roles in the regulation of chromatin structure and gene expression. However, its precise functions still remain poorly understood and information about its distribution in non-mammalian species is still lacking. Here, the distribution of 5hmC was investigated in the brain of adult zebrafish, African claw frog, and mouse in a comparative manner. We show that zebrafish neurons are endowed with high levels of 5hmC, whereas quiescent or proliferative neural progenitors show low to undetectable levels of the modified cytosine. In the brain of larval and juvenile Xenopus, 5hmC is also detected in neurons, while ventricular proliferative cells do not display this epigenetic mark. Similarly, 5hmC is enriched in neurons compared to neural progenitors of the ventricular zone in the mouse developing cortex. Interestingly, 5hmC colocalized with the methylated DNA binding protein MeCP2 and with the active chromatin histone modification H3K4me2 in mouse neurons. Taken together, our results show an evolutionarily conserved cerebral distribution of 5hmC between fish and tetrapods and reinforce the idea that 5hmC fulfills major functions in the control of chromatin activity in vertebrate neurons. J. Comp. Neurol. 525:478-497, 2017. © 2016 Wiley Periodicals, Inc

    Single-CpG resolution mapping of 5-hydroxymethylcytosine by chemical labeling and exonuclease digestion identifies evolutionarily unconserved CpGs as TET targets

    No full text
    International audienceConventional techniques for single-base resolution mapping of epigenetic modifications of DNA such as 5-hydroxymethylcytosine (5hmC) rely on the sequencing of bisulfite-modified DNA. Here we present an alternative approach called SCL-exo which combines selective chemical labeling (SCL) of 5hmC in genomic DNA with exonuclease (exo) digestion of the bead-trapped modified DNA molecules. Associated with a straightforward bioinformatic analysis, this new procedure provides an unbiased and fast method for mapping this epigenetic mark at high resolution. Implemented on mouse genomic DNA from in vitro-differentiated neural precursor cells, SCL-exo sheds light on an intrinsic lack of conservation of hydroxymethylated CpGs across vertebrates

    Cytosine modifications modulate the chromatin architecture of transcriptional enhancers

    No full text
    “Human and Environmental Genomics” platform (Rennes) for Illumina sequencing / Proteomics Core Facility of the Cambridge Institute (Cancer Research UK)International audienceEpigenetic mechanisms are believed to play key roles in the establishment of cell-specific transcription programs. Accordingly, the modified bases 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) have been observed in DNA of genomic regulatory regions such as enhancers, and oxidation of 5mC into 5hmC by Ten-eleven translocation (TET) proteins correlates with enhancer activation. However, the functional relationship between cytosine modifications and the chromatin architecture of enhancers remains elusive. To gain insights into their function, 5mC and 5hmC levels were perturbed by inhibiting DNA methyltransferases and TETs during differentiation of mouse embryonal carcinoma cells into neural progenitors, and chromatin characteristics of enhancers bound by the pioneer transcription factors FOXA1, MEIS1, and PBX1 were interrogated. In a large fraction of the tested enhancers, inhibition of DNA methylation was associated with a significant increase in monomethylation of H3K4, a characteristic mark of enhancer priming. In addition, at some specific enhancers, 5mC oxidation by TETs facilitated chromatin opening, a process that may stabilize MEIS1 binding to these genomic regions
    corecore