475 research outputs found

    Pairing dynamics in strongly correlated superconductivity

    Full text link
    Confirmation of the phononic origin of Cooper pair formation in superconductors came with the demonstration that the interaction was retarded and that the corresponding energy scales were associated with phonons. Using cellular dynamical mean-field theory for the two-dimensional Hubbard model, we identify such retardation effects in d-wave pairing and associate the corresponding energy scales with short-range spin fluctuations. We find which frequencies are relevant for pairing as a function of interaction strength and doping and show that the disappearance of superconductivity on the overdoped side coincides with the disappearance of the low energy feature in the antiferromagnetic fluctuations, as observed in neutron scattering experiments.Comment: LaTeX, 8 pages, 8 figure

    d-Wave superconductivity on the checkerboard Hubbard model at weak and strong coupling

    Full text link
    It has been argued that inhomogeneity generally can enhance superconductivity in the cuprate high-Tc materials. To check the validity of this claim, we study d-wave superconductivity on the checkerboard Hubbard model on a square lattice using the Cellular Dynamical Mean Field theory method with an exact diagonalization solver at zero temperature. The d-wave order parameter is computed for various inhomogeneity levels over the entire doping range of interest in both strong and weak coupling regimes. At a given doping, the size of the d-wave order parameter manifests itself directly in the height of the coherence peaks and hence is an appropriate measure of the strength of superconductivity. The weak coupling results reveal a suppression of the order parameter in the presence of inhomogeneity for small to intermediate hole dopings, while it is enhanced for large dopings. In contrast, for strong coupling there is a monotonic decrease in the maximum amplitude of the superconducting order parameter with inhomogeneity over the entire doping range of interest. Furthermore, at moderately high inhomogeneity, the system undergoes a first-order transition from the superconducting to the normal state in the underdoped regime. In the overdoped regime, the change in the value of the superconducting order parameter correlates with the height of the lowest energy peak in the spectral weight of antiferromagnetic spin fluctuations, confirming the connection between antiferromagnetic fluctuations and d-wave superconductivity found in earlier studies on the homogeneous case. Our results are benchmarked by comparisons with numerically exact results on the checkerboard Hubbard ladder.Comment: Expanded version includes results on checkerboard Hubbard ladder: 10 pages, 12 figure

    Tunneling between edge states in a quantum spin Hall system

    Full text link
    We analyze a quantum spin Hall (QSH) device with a point contact connecting two of its edges. The contact supports a net spin tunneling current that can be probed experimentally via a two-terminal resistance measurement. We find that the low-bias tunneling current and the differential conductance exhibit scaling with voltage and temperature that depend nonlinearly on the strength of the electron-electron interaction.Comment: 4 pages, 3 figures; published versio
    • …
    corecore