198 research outputs found

    CDMFT+HFD : an extension of dynamical mean field theory for nonlocal interactions applied to the single band extended Hubbard model

    Full text link
    We examine the phase diagram of the extended Hubbard model on a square lattice, for both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD, a combination of Cluster Dynamical Mean Field theory (CDMFT) and a Hartree-Fock mean-field decoupling of the inter-cluster extended interaction. For attractive non-local interactions, this model exhibits a region of phase separation near half-filling, in the vicinity of which we find pockets of d-wave superconductivity, decaying rapidly as a function of doping, with disconnected patches of extended s-wave order at smaller (higher) electron densities. On the other hand, when the extended interaction is repulsive, a Mott insulating state at half-filling is destabilized by hole doping, in the strong-coupling limit, in favor of d-wave superconductivity. At the particle-hole invariant chemical potential, we find a first-order phase transition from antiferromagnetism (AF) to d-wave superconductivity as a function of the attractive nearest-neighbor interaction, along with a deviation of the density from the half-filled limit. A repulsive extended interaction instead favors charge-density wave (CDW) order at half-filling.Comment: 13 pages, 14 figure

    d-Wave superconductivity on the checkerboard Hubbard model at weak and strong coupling

    Full text link
    It has been argued that inhomogeneity generally can enhance superconductivity in the cuprate high-Tc materials. To check the validity of this claim, we study d-wave superconductivity on the checkerboard Hubbard model on a square lattice using the Cellular Dynamical Mean Field theory method with an exact diagonalization solver at zero temperature. The d-wave order parameter is computed for various inhomogeneity levels over the entire doping range of interest in both strong and weak coupling regimes. At a given doping, the size of the d-wave order parameter manifests itself directly in the height of the coherence peaks and hence is an appropriate measure of the strength of superconductivity. The weak coupling results reveal a suppression of the order parameter in the presence of inhomogeneity for small to intermediate hole dopings, while it is enhanced for large dopings. In contrast, for strong coupling there is a monotonic decrease in the maximum amplitude of the superconducting order parameter with inhomogeneity over the entire doping range of interest. Furthermore, at moderately high inhomogeneity, the system undergoes a first-order transition from the superconducting to the normal state in the underdoped regime. In the overdoped regime, the change in the value of the superconducting order parameter correlates with the height of the lowest energy peak in the spectral weight of antiferromagnetic spin fluctuations, confirming the connection between antiferromagnetic fluctuations and d-wave superconductivity found in earlier studies on the homogeneous case. Our results are benchmarked by comparisons with numerically exact results on the checkerboard Hubbard ladder.Comment: Expanded version includes results on checkerboard Hubbard ladder: 10 pages, 12 figure

    Quantum cluster approach to the spinful Haldane-Hubbard model

    Full text link
    We study the spinful fermionic Haldane-Hubbard model at half filling using a combination of quantum cluster methods: cluster perturbation theory (CPT), the variational cluster approximation (VCA), and cluster dynamical mean-field theory (CDMFT). We explore possible zero-temperature phases of the model as a function of on-site repulsive interaction strength and next-nearest-neighbor hopping amplitude and phase. Our approach allows us to access the regime of intermediate interaction strength, where charge fluctuations are significant and effective spin model descriptions may not be justified. Our approach also improves upon mean-field solutions of the Haldane-Hubbard model by retaining local quantum fluctuations and treating them nonperturbatively. We find a correlated topological Chern insulator for weak interactions and a topologically trivial N\'eel antiferromagnetic insulator for strong interactions. For intermediate interactions, we find that topologically nontrivial N\'eel antiferromagnetic insulating phases and/or a topologically nontrivial nonmagnetic insulating phase may be stabilized.Comment: 11 pages, 12 figures. Published versio
    • …
    corecore