13 research outputs found
Voie de signalisation et gènes cibles de l’AMH dans le tractus génital femelle
Anti-Müllerian hormone (AMH) is a member of the TGF-ß superfamily. AMH is well known for its role in Müllerian duct regression in male fetuses. Postnatally, AMH is secreted by granulosa cells (GCs) of small growing follicles (preantral and small antral). However, despite the increasing interest of ovarian AMH in clinics, little is known on its mechanism of action and its role in female reproductive tract. My PhD project focuses on the identification of AMH function in the female reproductive tract.AMH signals through a type II transmembrane serine/threonine kinase receptor (AMHR-II) which forms a complex with a type I serine/threonine kinase receptor (ActR-IA, BMPR-IA, BMPR-IB). The type II receptor phosphorylates serine and threonine residues of type I receptor. Once activated, the type I receptor phosphorylates the receptor-regulated Smads (R-Smad1/5/8) which interact with a common partner Smad4. The Smad complex accumulates into the nucleus and regulates target gene expression. This canonical signalling pathway is regulated at different levels, in particular by co-receptors which amplify or antagonize TGF-ß family members action. The type I receptors and R-Smads involved in AMH effects on post-natal GCs remain unknown. In addition, to date, no co-receptor has been found for AMH. To define the involvement of the different type I receptors, we used siRNA technology to inactivate Acvr1, Bmpr1a and Bmpr1b in GC. In parallele, we analysed GC extracted from conditional mutant mice for Acvr1 and Bmpr1a. We found that BMPR-IA is the most important type I receptor for AMH to transduce its signal in GC. A Smad-Gal4/UAS-luciferase reporter gene technology allowed us to show that Smad1 and 5 are involved in AMH signaling pathway. Recently, new BMPs coreceptors were found, RGMs for Repulsive Guidance Molecules. There are three RGMs : RGMa, b and c. Because AMH shares with BMPs its type I receptors and R-Smad proteins, we hypothesized that they also share the same co-receptors, the RGM. We showed that RGMb was the only one expressed in GC and after siRNA transfection we demonstrated that this coreceptor is not essential for AMH to transduce its signal.To date, only few AMH target genes have been identified. Aromatase (Cyp19a1) and LH receptor (Lhcgr) are down-regulated by AMH in rat and porcine GCs. We used micro-array technology (Affymetrix) by comparing Wt and knockout immature ovaries to find new AMH target genes. This experiment evidenced that Ovgp1 and Kcnj2 are two new potential AMH target genes in the ovary.The last part of my project was to define a potential role of AMH in murine uterus. Only one study showed that AMHR-II is expressed in the mouse myometrium. We showed that Amh gene is slightly expressed in uterus but the results are not confirmed at the protein level. Using PCR-array, we found a lot of differentially expressed genes between Wt and Amh KO uterus. Therefore, AMH could regulate uterine function through the modulation of different genes located in the myometrium.L’hormone anti-Müllerienne (AMH) est un membre de la famille TGF-β impliquée dans la différenciation du tractus reproductif mâle. Elle est aussi exprimée par les cellules de la granulosa de l’ovaire adulte. Cependant, son rôle physiologique chez la femelle n’a pas encore été entièrement établi. Mon projet de thèse a pour objectif d’élucider le(s) rôle(s) de l’AMH dans le tractus reproductif femelle. L’AMH transduit ses effets par l’intermédiaire de deux récepteurs transmembranaires sérine/thréonine kinase : un récepteur de type II qui lui est spécifique (AMHR-II) et un récepteur de type I (ActR-IA, BMPR-IA, BMPR-IB) qu’elle partage avec les BMPs. Après fixation de l’hormone sur le récepteur de type II, celui-ci recrute et phosphoryle le récepteur de type I. Ce dernier phosphoryle à son tour les Smads spécifiques (Smad1, 5 et 8) qui s’associent à la Smad commune, Smad4. L’ensemble transloque dans le noyau et en association avec des facteurs de transcription régule les gènes cibles de l’hormone. L'utilisation de souris KO conditionnelles pour les récepteurs Acvr1 et Bmpr1a et d'une technique de siRNA dirigés contre chacun des trois récepteurs de type I a permis de mettre en évidence que le récepteur BMPR-IA est un acteur essentiel de la voie de signalisation de l'AMH dans les cellules de la granulosa. Pour déterminer la ou les Smad(s) impliquées, une technique de gènes rapporteurs, Smad-Gal4/UAS-luciférase, a été utilisée. Nous avons pu montrer que les Smad1 et 5 sont importantes pour la transduction du signal de l'AMH dans les cellules de la granulosa. Récemment des corécepteurs aux BMPs, les Repulsive Guidance Molecule (RGMs), ont été mis en évidence. L’AMH partageant sa voie de signalisation avec les BMPs, nous avons cherché à déterminer si ces corécepteurs pouvaient également intervenir dans la voie de signalisation de l’AMH. Il existe 3 types de RGMs: RGMa, RGMb et RGMc. Nous avons montré en q-PCR que seul RGMb est exprimé dans les cellules de la granulosa alors que les 3 RGMs sont exprimés dans l’ovaire. L'utilisation de siRNA dirigés contre RGMb a permis de montrer que ce récepteur n'est pas nécessaire à la transduction du signal de l'AMH. Actuellement, seuls deux gènes cibles de l’AMH sont connus dans les cellules de la granulosa : l’aromatase et le récepteur LH. Nous avons réalisé des analyses de puces à ADN (ou micro-array) pour décrire de nouveaux gènes cibles de l'AMH. L'analyse des puces a permis de décrire de nouveaux gènes régulés par cette hormone tels qu’Ovgp1 ou Kcnj2. La dernière partie de mon projet visait à déterminer un rôle potentiel de l'AMH dans l'utérus. En effet, le récepteur de cette hormone est exprimé dans le myomètre utérin de souris permettant de supposer qu’elle peut agir sur cet organe. Nous avons pu mettre en évidence une expression faible du gène de l’Amh dans l’utérus. En revanche, l’expression et la localisation de la protéine restent encore à définir. Une expérience de PCR-array a permis de montrer que de nombreux gènes sont différentiellement exprimés entre l’utérus Wt et l’utérus KO Amh. Ceci indique que l’AMH jouerait un rôle sur la régulation de la fonction utérine qu’elle soit exprimée ou non dans cet organe
AMH signaling pathway and its target genes in female reproductive tract
L’hormone anti-Müllerienne (AMH) est un membre de la famille TGF-β impliquée dans la différenciation du tractus reproductif mâle. Elle est aussi exprimée par les cellules de la granulosa de l’ovaire adulte. Cependant, son rôle physiologique chez la femelle n’a pas encore été entièrement établi. Mon projet de thèse a pour objectif d’élucider le(s) rôle(s) de l’AMH dans le tractus reproductif femelle. L’AMH transduit ses effets par l’intermédiaire de deux récepteurs transmembranaires sérine/thréonine kinase : un récepteur de type II qui lui est spécifique (AMHR-II) et un récepteur de type I (ActR-IA, BMPR-IA, BMPR-IB) qu’elle partage avec les BMPs. Après fixation de l’hormone sur le récepteur de type II, celui-ci recrute et phosphoryle le récepteur de type I. Ce dernier phosphoryle à son tour les Smads spécifiques (Smad1, 5 et 8) qui s’associent à la Smad commune, Smad4. L’ensemble transloque dans le noyau et en association avec des facteurs de transcription régule les gènes cibles de l’hormone. L'utilisation de souris KO conditionnelles pour les récepteurs Acvr1 et Bmpr1a et d'une technique de siRNA dirigés contre chacun des trois récepteurs de type I a permis de mettre en évidence que le récepteur BMPR-IA est un acteur essentiel de la voie de signalisation de l'AMH dans les cellules de la granulosa. Pour déterminer la ou les Smad(s) impliquées, une technique de gènes rapporteurs, Smad-Gal4/UAS-luciférase, a été utilisée. Nous avons pu montrer que les Smad1 et 5 sont importantes pour la transduction du signal de l'AMH dans les cellules de la granulosa. Récemment des corécepteurs aux BMPs, les Repulsive Guidance Molecule (RGMs), ont été mis en évidence. L’AMH partageant sa voie de signalisation avec les BMPs, nous avons cherché à déterminer si ces corécepteurs pouvaient également intervenir dans la voie de signalisation de l’AMH. Il existe 3 types de RGMs: RGMa, RGMb et RGMc. Nous avons montré en q-PCR que seul RGMb est exprimé dans les cellules de la granulosa alors que les 3 RGMs sont exprimés dans l’ovaire. L'utilisation de siRNA dirigés contre RGMb a permis de montrer que ce récepteur n'est pas nécessaire à la transduction du signal de l'AMH. Actuellement, seuls deux gènes cibles de l’AMH sont connus dans les cellules de la granulosa : l’aromatase et le récepteur LH. Nous avons réalisé des analyses de puces à ADN (ou micro-array) pour décrire de nouveaux gènes cibles de l'AMH. L'analyse des puces a permis de décrire de nouveaux gènes régulés par cette hormone tels qu’Ovgp1 ou Kcnj2. La dernière partie de mon projet visait à déterminer un rôle potentiel de l'AMH dans l'utérus. En effet, le récepteur de cette hormone est exprimé dans le myomètre utérin de souris permettant de supposer qu’elle peut agir sur cet organe. Nous avons pu mettre en évidence une expression faible du gène de l’Amh dans l’utérus. En revanche, l’expression et la localisation de la protéine restent encore à définir. Une expérience de PCR-array a permis de montrer que de nombreux gènes sont différentiellement exprimés entre l’utérus Wt et l’utérus KO Amh. Ceci indique que l’AMH jouerait un rôle sur la régulation de la fonction utérine qu’elle soit exprimée ou non dans cet organe.Anti-Müllerian hormone (AMH) is a member of the TGF-ß superfamily. AMH is well known for its role in Müllerian duct regression in male fetuses. Postnatally, AMH is secreted by granulosa cells (GCs) of small growing follicles (preantral and small antral). However, despite the increasing interest of ovarian AMH in clinics, little is known on its mechanism of action and its role in female reproductive tract. My PhD project focuses on the identification of AMH function in the female reproductive tract.AMH signals through a type II transmembrane serine/threonine kinase receptor (AMHR-II) which forms a complex with a type I serine/threonine kinase receptor (ActR-IA, BMPR-IA, BMPR-IB). The type II receptor phosphorylates serine and threonine residues of type I receptor. Once activated, the type I receptor phosphorylates the receptor-regulated Smads (R-Smad1/5/8) which interact with a common partner Smad4. The Smad complex accumulates into the nucleus and regulates target gene expression. This canonical signalling pathway is regulated at different levels, in particular by co-receptors which amplify or antagonize TGF-ß family members action. The type I receptors and R-Smads involved in AMH effects on post-natal GCs remain unknown. In addition, to date, no co-receptor has been found for AMH. To define the involvement of the different type I receptors, we used siRNA technology to inactivate Acvr1, Bmpr1a and Bmpr1b in GC. In parallele, we analysed GC extracted from conditional mutant mice for Acvr1 and Bmpr1a. We found that BMPR-IA is the most important type I receptor for AMH to transduce its signal in GC. A Smad-Gal4/UAS-luciferase reporter gene technology allowed us to show that Smad1 and 5 are involved in AMH signaling pathway. Recently, new BMPs coreceptors were found, RGMs for Repulsive Guidance Molecules. There are three RGMs : RGMa, b and c. Because AMH shares with BMPs its type I receptors and R-Smad proteins, we hypothesized that they also share the same co-receptors, the RGM. We showed that RGMb was the only one expressed in GC and after siRNA transfection we demonstrated that this coreceptor is not essential for AMH to transduce its signal.To date, only few AMH target genes have been identified. Aromatase (Cyp19a1) and LH receptor (Lhcgr) are down-regulated by AMH in rat and porcine GCs. We used micro-array technology (Affymetrix) by comparing Wt and knockout immature ovaries to find new AMH target genes. This experiment evidenced that Ovgp1 and Kcnj2 are two new potential AMH target genes in the ovary.The last part of my project was to define a potential role of AMH in murine uterus. Only one study showed that AMHR-II is expressed in the mouse myometrium. We showed that Amh gene is slightly expressed in uterus but the results are not confirmed at the protein level. Using PCR-array, we found a lot of differentially expressed genes between Wt and Amh KO uterus. Therefore, AMH could regulate uterine function through the modulation of different genes located in the myometrium
Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells.
Anti-Müllerian hormone (AMH) is a member of the TGF-β superfamily secreted by the gonads of both sexes. This hormone is primarily known for its role in the regression of the Müllerian ducts in male fetuses. In females, AMH is expressed in granulosa cells of developing follicles. Like other members of the TGF-β superfamily, AMH transduces its signal through two transmembrane serine/threonine kinase receptors including a well characterized type II receptor, AMHR-II. The complete signalling pathway of AMH involving Smads proteins and the type I receptor is well known in the Müllerian duct and in Sertoli and Leydig cells but not in granulosa cells. In addition, few AMH target genes have been identified in these cells. Finally, while several co-receptors have been reported for members of the TGF-β superfamily, none have been described for AMH. Here, we have shown that none of the Bone Morphogenetic Proteins (BMPs) co-receptors, Repulsive guidance molecules (RGMs), were essential for AMH signalling. We also demonstrated that the main Smad proteins used by AMH in granulosa cells were Smad 1 and Smad 5. Like for the other AMH target cells, the most important type I receptor for AMH in these cells was BMPR-IA. Finally, we have identified a new AMH target gene, Id3, which could be involved in the effects of AMH on the differentiation of granulosa cells and its other target cells
Multigenerational impacts of bile exposure are mediated by TGR5 signaling pathways
Abstract Besides their well-known roles in digestion and fat solubilization, bile acids (BAs) have been described as signaling molecules activating the nuclear receptor Farnesoid-X-receptor (FXRα) or the G-protein-coupled bile acid receptor-1 (GPBAR-1 or TGR5). In previous reports, we showed that BAs decrease male fertility due to abnormalities of the germ cell lineage dependent on Tgr5 signaling pathways. In the presentstudy, we tested whether BA exposure could impact germ cell DNA integrity leading to potential implications for progeny. For that purpose, adult F0 male mice were fed a diet supplemented with cholic acid (CA) or the corresponding control diet during 3.5 months prior mating. F1 progeny from CA exposed founders showed higher perinatal lethality, impaired BA homeostasis and reduced postnatal growth, as well as altered glucose metabolism in later life. The majority of these phenotypic traits were maintained up to the F2 generation. In F0 sperm cells, differential DNA methylation associated with CA exposure may contribute to the initial programming of developmental and metabolic defects observed in F1 and F2 offspring. Tgr5 knock-out mice combined with in vitro strategies defined the critical role of paternal Tgr5 dependent pathways in the multigenerational impacts of ancestral CA exposure
Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha
Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXR alpha in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXR alpha have altered BA homeostasis in both liver and testis. In the absence of FXR alpha, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxr alpha-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxr alpha-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activit
Involvement of serine/threonine kinase type I receptors.
<p>siRNA transfection for each type I receptor gene was performed when cells were 50% to 80% confluent. 24 h later GCs were exposed (▪) or not (□) to 8 nM AMH during another 24 h. The effect of siRNA on target gene expression was determined by real time PCR (A–C, n = 4). Data were analyzed using ANOVA followed by Tukey test for all-pair comparisons. The effect of <i>Acvr1</i>, <i>Bmpr1a</i> and <i>Bmpr1b</i> knockdown on AMH sensitivity was analysed by Western blot using a phospho-Smad1/5/8 antibody (D, n = 4) and was quantified and normalized (E). The effect of <i>Acvr1</i>, <i>Bmpr1a</i> and <i>Bmpr1b</i> knockdown on <i>Id3</i> expression was analyzed by real-time PCR (F, n = 3). Data were analyzed using paired <i>t</i>-test. * <i>p</i><0.05, ** <i>p</i><0.01, *** <i>p</i><0.001. Only GCs transfected with siRNA against <i>Bmpr1a</i> present a significant decrease of AMH response.</p
AMH target genes in granulosa cells.
<p>After collecting and seeding, GCs were exposed (▪) or not (□) to 8 nM AMH (A–E) for 24 h. The effect of AMH stimulation on different potential target genes was examined by real time PCR (A–D, n = 4; E, n = 5). Hprt expression was used to normalize the results. Data were analyzed using paired <i>t</i>-test. * <i>p</i><0.05. <i>Id3</i> expression is significantly increased after AMH exposure.</p
Smad1 and 5 are the main Smads activated by AMH in granulosa cells.
<p>GCs were co-transfected with a luciferase reporter construct (UAS-luc) and different expression constructs (Smad-Gal4). Four different expression constructs were transfected in combination with the reporter construct: Smad1-Gal4, Smad5-Gal4, Smad8-Gal4 and Gal4 as a control. Cells were stimulated (▪) or not (□) with 8 nM AMH. In the absence of AMH, the fusion protein Smad-Gal4 remained in the cytoplasm which is reflected by a basal expression level of luciferase. After 24h of treatment with AMH, the Smad-Gal4 protein was phosphorylated and could translocate into the nucleus and increase luciferase expression. Firefly luciferase activity measured in control medium was set to 100 arbitrary units. The results are expressed as a percentage of stimulation of Firefly luciferase activity measured in the presence of AMH (n = 3). Data were analyzed using paired <i>t</i>-test. ** <i>p</i><0.01.</p
Characterization of granulosa cells in primary culture.
<p>Granulosa cells (GCs) were collected from 3 weeks old C57BL/6 mice ovaries and seeded at a density 1×10<sup>5</sup> cells/well. 24 h later, GCs were incubated without primary antibodies (IgG) for the control condition (A) or with an anti-AMH antibody (B). The secondary antibody was coupled to FITC and DAPI was used to visualize the nucleus. AMH expression was detected in the cytoplasm as expected. To asssay the transfection efficiency, primary GCs were transfected either with a β-galactosidase vector (C, 1 µg), pMax-GFP vector (D, 1 µg) or GAPDH-cy3 siRNA (E). After 24 h, GC were fixed, stained with X-Gal and counterstained with nuclear fast red (C) or fluorescence was visualized (D). Alternatively, siRNA transfection efficiency was assayed with a GAPDH-cy3 siRNA on isolated GCs using flow cytometry analysis (E). (F), Markers of immature GCs were analysed by RT-PCR to confirm their status.</p
Granulosa cells from <i>Bmpr1a</i> cKO mice do not respond to AMH.
<p><i>Amhr2-Cre</i>; <i>Acvr1</i><sup>+/−</sup> or <i>Amhr2-Cre</i>; <i>Bmpr1a</i><sup>+/−</sup> males were bred to <i>Acvr1</i><sup>fx/fx</sup> or <i>Bmpr1a</i><sup>fx/fx</sup> females to generate females that were conditionally null for <i>Acvr1</i> (A, n = 3) or <i>Bmpr1a</i> (B, n = 7) in GCs. GCs were exposed (▪) or not (□) to 8 nM AMH. The AMH response was tested in GCs from these cKO mice by Western blot using a phospho-Smad1/5/8 antibody (A,C). Western blots were quantified and normalized to actin levels (B n = 3, D n = 7). AMH induced the phosphorylation of Smad1/5/8 in GCs from <i>Acvr1</i> cKO (A, B) mice but not in those from <i>Bmpr1a</i> cKO mice (C, D). Data were analyzed using paired <i>t</i>-test. * <i>p</i><0.05, a: <i>p</i> = 0.058. Only <i>Bmpr1a</i> conditional mutant GCs present a significant decrease of AMH response.</p