1,782 research outputs found
Micromammalian faunas from the middle miocene (middle Aragonian) of the Tudela formation (Ebro Basin, Spain)
Two new fossil micromammal localities of Middle Miocene age (Pico del Fraile 2, PF2 and Sancho Abarca 5, SA5) from the Tudela Formation (northeastern Ebro Basin) are described. PF2 contains rodents and insectivores of Aragonian age (local zone Dc). The rodent assemblage from the locality SA5 is very scarce and probably of Middle Aragonian age, like PF2. The micromammal fauna from the locality PF2 is very similar to that from Valdemoros 3B (VA3B) (Calatayud-Daroca Basin), including Microdyromys cf. remmerti, a species until now only described from the Miocene of the Daroca-Villafeliche area. Among the fauna recorded in PF2, a form of Democricetodon is described. The sedimentary record of the Pico del Fraile and Sancho Abarca sections and the mammalian findings extend the stratigraphic and paleontological knowledge of this part of the Ebro Basin, and allow its study in a continuous stratigraphic context
The DEHVILS Survey Overview and Initial Data Release: High-Quality Near-Infrared Type Ia Supernova Light Curves at Low Redshift
While the sample of optical Type Ia Supernova (SN Ia) light curves (LCs)
usable for cosmological parameter measurements surpasses 2000, the sample of
published, cosmologically viable near-infrared (NIR) SN Ia LCs, which have been
shown to be good "standard candles," is still 200. Here, we present
high-quality NIR LCs for 83 SNe Ia ranging from as a part of
the Dark Energy, H, and peculiar Velocities using Infrared Light from
Supernovae (DEHVILS) survey. Observations are taken using UKIRT's WFCAM, where
the median depth of the images is 20.7, 20.1, and 19.3 mag (Vega) for , ,
and -bands, respectively. The median number of epochs per SN Ia is 18 for
all three bands () combined and 6 for each band individually. We fit 47 SN
Ia LCs that pass strict quality cuts using three LC models, SALT3, SNooPy, and
BayeSN and find scatter on the Hubble diagram to be comparable to or better
than scatter from optical-only fits in the literature. Fitting NIR-only LCs, we
obtain standard deviations ranging from 0.128-0.135 mag. Additionally, we
present a refined calibration method for transforming 2MASS magnitudes to WFCAM
magnitudes using HST CALSPEC stars that results in a 0.03 mag shift in the
WFCAM -band magnitudes.Comment: 24 pages, 9 figures. Accepted by MNRA
B-cell regeneration profile and minimal residual disease status in bone marrow of treated multiple myeloma patients
© 2021 by the authors.B-cell regeneration during therapy has been considered as a strong prognostic factor in multiple myeloma (MM). However, the effects of therapy and hemodilution in bone marrow (BM) B-cell recovery have not been systematically evaluated during follow-up. MM (n = 177) and adult (≥50y) healthy donor (HD; n = 14) BM samples were studied by next-generation flow (NGF) to simultaneously assess measurable residual disease (MRD) and residual normal B-cell populations. BM hemodilution was detected in 41 out of 177 (23%) patient samples, leading to lower total B-cell, B-cell precursor (BCP) and normal plasma cell (nPC) counts. Among MM BM, decreased percentages (vs. HD) of BCP, transitional/naïve B-cell (TBC/NBC) and nPC populations were observed at diagnosis. BM BCP increased after induction therapy, whereas TBC/NBC counts remained abnormally low. At day+100 postautologous stem cell transplantation, a greater increase in BCP with recovered TBC/NBC cell numbers but persistently low memory B-cell and nPC counts were found. At the end of therapy, complete response (CR) BM samples showed higher CD19− nPC counts vs. non-CR specimens. MRD positivity was associated with higher BCP and nPC percentages. Hemodilution showed a negative impact on BM B-cell distribution. Different BM B-cell regeneration profiles are present in MM at diagnosis and after therapy with no significant association with patient outcome.This work has been supported by the International Myeloma Foundation-Black Swan Research Initiative, the EuroFlow Consortium (grant LSHB-CT-2006-018708); Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER), numbers: CB16/12/00400, CB16/12/00233, CB16/12/00369, CB16/12/00489 and CB16/12/00480; grant from Bilateral Cooperation Program between Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES (Brasília/Brazil) and Dirección General de Políticas Universitárias (DGPU)-Ministério de Educación, Cultura y Deportes (Madrid/Spain) number DGPU 311/15; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ) numbers: E26/110.105/2014 and E26/102.191/2013; grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil (CNPQ), number: 400194/2014-7. R.M.d.P. was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/DGPU), number: 000281/2016-06 and CAPES/PROEX 641/2018, Brazil; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro of Brazil (FAPERJ) number: E01/200/537/2018
Pegylated Interferon and Ribavirin Dosing Strategies to Enhance Sustained Virologic Response
Hepatitis C virus (HCV) affects about 170 million people worldwide and is the most common chronic blood borne infection in the United States. Since the advent of blood screening protocols in the early 1990s, injection drug use has become the leading cause of infection. Hepatitis C can have both hepatic and nonhepatic manifestations of infection. Hepatic manifestations include hepatic fibrosis, cirrhosis, liver cancer, and liver failure. The standard treatment for chronic HCV is combination therapy with pegylated interferon-α and ribavirin. Although pegylated interferon and ribavirin has been used against HCV for close to a decade, advances in therapy have centered on doses and treatment durations. There has been increasing interest in applying on-treatment response or viral kinetics to predict antiviral response rates and shape therapeutic intervention. Protease inhibitors are a promising adjuvant to combination therapy, but their efficacy and safety are still under investigation
Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC)
© The Author(s) 2018.Here, we investigated for the first time the frequency and number of circulating tumor plasma cells (CTPC) in peripheral blood (PB) of newly diagnosed patients with localized and systemic plasma cell neoplasms (PCN) using next-generation flow cytometry (NGF) and correlated our findings with the distinct diagnostic and prognostic categories of the disease. Overall, 508 samples from 264 newly diagnosed PCN patients, were studied. CTPC were detected in PB of all active multiple myeloma (MM; 100%), and smoldering MM (SMM) patients (100%), and in more than half (59%) monoclonal gammopathy of undetermined significance (MGUS) cases (p <0.0001); in contrast, CTPC were present in a small fraction of solitary plasmacytoma patients (18%). Higher numbers of CTPC in PB were associated with higher levels of BM infiltration and more adverse prognostic features, together with shorter time to progression from MGUS to MM (p <0.0001) and a shorter survival in MM patients with active disease requiring treatment (p ≤ 0.03). In summary, the presence of CTPC in PB as assessed by NGF at diagnosis, emerges as a hallmark of disseminated PCN, higher numbers of PB CTPC being strongly associated with a malignant disease behavior and a poorer outcome of both MGUS and MM.This work has been supported by the International Myeloma Foundation-Black Swan Research Initiative and the EuroFlow Consortium; Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC; Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER), numbers: CB16/12/00400, CB16/12/00369, CB16/12/00489 and CB16/12/00233; grant SA079U14 from the Consejería de Educación, Junta de Castilla y León, Valladolid, Spain and; grant DTS15/00119 from Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain. Acuerdo de colaboración con Fundación de Hemoterapia y Hemodonación de Castilla y León, Valladolid, Spain. This study was also supported by the Qatar National Research Fund (QNRF) Award No. 7-916-3-237, the AACR-Millennium Fellowship in Multiple Myeloma Research (15-40-38-PAIV), ERA-NET TRANSCAN-2 (iMMunocell), by a 2017 Leonardo Grant (BZG10931) for Researchers and Cultural Creators, BBVA Foundation, and the European Research Council (ERC) 2015 Starting Grant (MYELOMANEXT)
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
- …