1,698 research outputs found

    Top quark forward-backward asymmetry from the 3313-3-1 model

    Full text link
    The forward-backward asymmetry AFBA_{FB} in top quark pair production, measured at the Tevatron, is probably related to the contribution of new particles. The Tevatron result is more than a 2σ2\sigma deviation from the standard model prediction and motivates the application of alternative models introducing new states. However, as the standard model predictions for the total cross section σtt\sigma_{tt} and invariant mass distribution MttM_{tt} for this process are in good agreement with experiments, any alternative model must reproduce these predictions. These models can be placed into two categories: One introduces the s-channel exchange of new vector bosons with chiral couplings to the light quarks and to the top quark and another relies on the t-channel exchange of particles with large flavor-violating couplings in the quark sector. In this work we employ a model which introduces both s- and t-channel nonstandard contributions for the top quark pair production in proton antiproton collisions. We use the minimal version of the SU(3)CSU(3)LU(1)XSU(3)_C \otimes SU(3)_L \otimes U (1)_X model (3-3-1 model) that predicts the existence of a new neutral gauge boson, called ZZ^\prime. This gauge boson has both flavor-changing couplings to up and top quarks and chiral coupling to the light quarks and to the top quark. This very peculiar model coupling can correct the AFBA_{FB} for top quark pair production for two ranges of ZZ^\prime mass while leading to cross section and invariant mass distribution quite similar to the standard model ones. This result reinforces the role of the 3-3-1 model for any new physics effect.Comment: 12 pages, 4 figures, 2 table

    Ultracold heteronuclear molecules and ferroelectric superfluids

    Full text link
    We analyze the possibility of a ferroelectric transition in heteronuclear molecules consisting of Bose-Bose, Bose-Fermi or Fermi-Fermi atom pairs. This transition is characterized by the appearance of a spontaneous electric polarization below a critical temperature. We discuss the existence of a ferroelectric Fermi liquid phase for Fermi molecules and the existence of a ferroelectric superfluid phase for Bose molecules characterized by the coexistence of ferroelectric and superfluid orders. Lastly, we propose an experiment to detect ferroelectric correlations through the observation of coherent dipole radiation pulses during time of flight.Comment: 4 pages and 3 figure

    Hepatic acute phase response protects the brain from focal inflammation during postnatal window of susceptibility

    Get PDF
    Perinatal inflammation is known to contribute to neurodevelopmental diseases. Animal models of perinatal inflammation have revealed that the inflammatory response within the brain is age dependent, but the regulators of this variation remain unclear. In the adult, the peripheral acute phase response (APR) is known to be pivotal in the downstream recruitment of leukocytes to the injured brain. The relationship between perinatal brain injury and the APR has not been established. Here, we generated focal inflammation in the brain using interleukin (IL)-1β at postnatal day (P)7, P14, P21 and P56 and studied both the central nervous system (CNS) and hepatic inflammatory responses at 4 h. We found that there is a significant window of susceptibility in mice at P14, when compared to mice at P7, P21 and P56. This was reflected in increased neutrophil recruitment to the CNS, as well as an increase in blood–brain barrier permeability. To investigate phenomena underlying this window of susceptibility, we performed a dose response of IL-1β. Whilst induction of endogenous IL-1β or intercellular adhesion molecule (ICAM)-1 in the brain and induction of a hepatic APR were dose dependent, the recruitment of neutrophils and associated blood–brain barrier breakdown was inversely proportional. Furthermore, in contrast to adult animals, an additional peripheral challenge (intravenous IL-1β) reduced the degree of CNS inflammation, rather than exacerbating it. Together these results suggest a unique window of susceptibility to CNS injury, meaning that suppressing systemic inflammation after brain injury may exacerbate the damage caused, in an age-dependent manner

    F-wave versus P-wave Superconductivity in Organic Conductors

    Full text link
    Current experimental results suggest that some organic quasi-one-dimensional superconductors exhibit triplet pairing symmetry. Thus, we discuss several potential triplet order parameters for the superconducting state of these systems within the functional integral formulation. We compare weak spin-orbit coupling fxyzf_{xyz}, pxp_x, pyp_y and pzp_z symmetries via several thermodynamic quantities. For each symmetry, we analyse the temperature dependences of the order parameter, condensation energy, specific heat, and superfluid density tensor.Comment: 5 pages, 4 figure

    Density classification on infinite lattices and trees

    Full text link
    Consider an infinite graph with nodes initially labeled by independent Bernoulli random variables of parameter p. We address the density classification problem, that is, we want to design a (probabilistic or deterministic) cellular automaton or a finite-range interacting particle system that evolves on this graph and decides whether p is smaller or larger than 1/2. Precisely, the trajectories should converge to the uniform configuration with only 0's if p1/2. We present solutions to that problem on the d-dimensional lattice, for any d>1, and on the regular infinite trees. For Z, we propose some candidates that we back up with numerical simulations
    corecore