4 research outputs found

    Recovery and Enrichment of Phosphorus from the Nitric Acid Extract of Dephosphorization Slag

    Get PDF
    A method for the recovery and enrichment of the phosphate from dephosphorization slag was examined. First, the elution of aqueous phosphate from dephosphorization slag using aqueous HNO3 was examined using both the batch and flow methods. With the batch method, 82% of the dephosphorization slag could be dissolved within 30 min using 1.0 mol/L HNO3, indicating that the batch method could be used for mass processing to extract phosphorus in the bulk phase, but all components contained in the slag were unselectively dissolved. In contrast, by using 0.05 mol/L HNO3 via the flow method, 22% of the slag was dissolved in 100 min giving a more selective dissolution of phosphate from the slag compared with the batch method, which indicated that this method would be incompatible with mass processing for the purpose of extracting phosphorus in the bulk phase. In order to remove the Fe-species in the aqueous solution obtained by the batch method using 1.0 mol/L HNO3, which has been referred to as the “slag solution,” it was necessary to add calcium hydroxyapatite (CaHAp) to the slag solution. The optimal conditions for the removal of Fe-species using CaHAp were observed at a solution pH of ca. 1.5, which resulted in 100% removal of the Fe-species after 4 h. When the pH of the slag solution was adjusted to 7.0 after removing the Fe species, a pale pink solid sample was precipitated. The amounts of phosphate in the slag solution and in the pink solid were 3.5 and 42.0 mol%, respectively, indicating that the treatment suggested in the present study could be used for the recovery and enrichment of phosphate, that is, phosphorous, from dephosphorization slag

    Recovery of Calcium Phosphates from Composted Chicken Manure

    Get PDF
    To recover phosphorus from composted chicken manure, a batch method with aqueous HNO3, HCl and H2SO4 was used to examine the elution behavior of the aqueous calcium and phosphate contained in the manure. Since the main components in manure are Ca2+ and K+ along with PO4 3- and those ions can be dissolved using an acidic eluate, it was expected that most of the aqueous Ca2+, K+ and PO4 3- could be obtained via the elution. Therefore, it seemed plausible that the removal of the aqueous K+ obtained by the elution of composted chicken manure would result in the formation of calcium phosphates. If calcium phosphates are formed, they can be used for phosphate rock, which also consists of various calcium phosphates. When using 0.1 mol/L HNO3, HCl or H2SO4, the elution behavior of the PO4 3- was not dependent on the acids. However, 0.1 mol/L H2SO4 was not sufficient for the elution of Ca2+, probably due to the precipitation of the calcium sulfate. The eluted amount of K+ using 0.1 mol/L HNO3 was lower than that using 0.1 mol/L of either HCl or H2SO4. Since the poor elution of K+ should enrich the concentrations of Ca2+ and PO4 3- in the acidic aqueous solution after the elution, it was suggested that aqueous HNO3 would be suitable as an eluate in the present system. After the elution of the composted chicken manure, when 0.1 mol/L HNO3 was used to adjust the solution pH of the acidic aqueous solution to greater than 6, Ca2+ and PO4 3- were precipitated, but K+ was not. The precipitate was calcium hydroxyapatite, one of the typical components of phosphate rock, which showed that composted chicken manure could be replaced phosphate rock as a new source of phosphorus

    Recovery of the Phosphorus from the Nitric Acid Extract of Powder Collected in a Bag Filter during the Recycling of Used Fluorescence Tubes

    Get PDF
    During the recovery of phosphorus from the powder collected in a bag filter during the recycling of used fluorescence tubes (bag-powder), the batch method with aqueous HNO3 was used to examine the elution behavior of aqueous phosphate contained in the bag-powder. The main components of the bag-powder included Ca2+, PO4 3- and Y3+ along with Si4+, Sr2+ and lanthanide cations such as La3+ and Ce4+. Therefore, it seemed possible that, with the selective dissolution of Ca2+ and PO4 3- from the bag-powder, these lanthanide cations in the residue could be enriched. With the batch method, most of the phosphate in the bag-powder was dissolved within 0.2 min using 1.0 mol/L HNO3. The dissolution behavior of calcium cation was similar to that of the phosphate. In contrast, the dissolution of yttrium, the content of which was the highest among the lanthanide cations in the bag-powder, was increased with the dissolution times, reaching complete dissolution after 24 h. The Sr2+, La3+ and Si4+ in the bag-powder, however, did not dissolve under the same conditions. Although Ca2+, PO4 3- and Y3+ were the main components in the nitric acid extract, Y3+ was separated as YPO4 at pH = 4.0, while Ca2+ and PO4 3- were separated as calcium phosphates at pH= 7.0. These results revealed that the separation of calcium phosphates, YPO4 and some residue was possible, and resulted in the enrichment of lanthanide cations along with the recovery of phosphorus from the bag-powder. Using the present technique, 91% of the P in the bag-powder was recovered
    corecore