56 research outputs found

    Effect of Lap Length and Stiffness of Peel-Stop Fasteners in Single Lap Joints

    No full text
    Strength tests on single lap joints with one adhesive (AV138/HV998) and one adhesive layer thickness (0.5 mm), three peel stoppers (brass bolt, nylon bolt and steel pin), and four lap lengths (12.5 mm, 25 mm, 40 mm and 100 mm) were conducted to investigate the effects of varying the lap length and stiffness of the peel-stop fasteners. Joint failure stress decreased, but failure force increased with lap length. Furthermore, joint failure stress was higher with the peel stopper. The effect of the brass-bolt peel stoppers was significant, whereas the effects of the nylon bolts and steel pins were smaller than that of the brass bolts. This indicates that the axial clamp strength and stiffness of the peel stopper are important factors in the shear strength of the lap. In addition, the effect of the stopper was negligible for the 12.5 mm lap. The reason is that the shear strength in the case of the 12.5 mm lap was large and thus the effect of the peel stopper was comparatively small. Moreover, the strength of the 100 mm lap reached the adherent material’s strength

    掘削関連技術動向の推移と技術開発の歴史

    No full text

    Effect of Lap Length and Stiffness of Peel-Stop Fasteners in Single Lap Joints

    No full text
    Strength tests on single lap joints with one adhesive (AV138/HV998) and one adhesive layer thickness (0.5 mm), three peel stoppers (brass bolt, nylon bolt and steel pin), and four lap lengths (12.5 mm, 25 mm, 40 mm and 100 mm) were conducted to investigate the effects of varying the lap length and stiffness of the peel-stop fasteners. Joint failure stress decreased, but failure force increased with lap length. Furthermore, joint failure stress was higher with the peel stopper. The effect of the brass-bolt peel stoppers was significant, whereas the effects of the nylon bolts and steel pins were smaller than that of the brass bolts. This indicates that the axial clamp strength and stiffness of the peel stopper are important factors in the shear strength of the lap. In addition, the effect of the stopper was negligible for the 12.5 mm lap. The reason is that the shear strength in the case of the 12.5 mm lap was large and thus the effect of the peel stopper was comparatively small. Moreover, the strength of the 100 mm lap reached the adherent material’s strength

    Radiation measurements with heat-proof polyethylene terephthalate bottles

    No full text
    This study demonstrates that the energy resolution of a newly developed 100 per cent pure polyvinyltoluene (PVT) plate allows its use as a base material for a plastic scintillator. The energy resolution, which is a key element for high-performance radiation detectors, was ΔE/E=8.41±0.07% (full width at half maximum (FWHM)) for 976 keV K-line conversion electrons from a 207Bi source. On the basis of results from 207Bi and 137Cs sources, the observed energy resolution of the PVT plate, ΔE/E=8.2/E1/2% (FWHM), was slightly better than that of a typical plastic scintillator (BC-408), ΔE/E=8.7/E1/2% (FWHM), with E in units of MeV. These results prompted us to search for other new base materials for plastic scintillators. In this study, we examined polyethylene terephthalate (PET) bottles, a common source of domestic plastic waste. We demonstrated that a lump of heat-proof PET bottles is fluorescent; moreover, there is excellent compatibility of the fluorescence with the quantum efficiency of typical photomultiplier tubes. This inexpensive source of plastic appears suitable for radiation measurements and as a base material for plastic scintillators. Future studies on the radiation response of plastics should lead to the development of higher performance and more eco-friendly radiation detectors

    Buckling Test of Composite Cylindrical Shells with Large Radius Thickness Ratio

    No full text
    A buckling test of composite cylindrical shells with a radius–thickness ratio (r/t) = 893 under axial compression was conducted to investigate the effects of the radius–thickness ratio (r/t). It is known that the buckling load of cylinders shows large differences and scatter between theory and experiment. The ratio of the experimental buckling load and theoretical buckling load is called the knockdown factor (KDF). Many investigations have been conducted to find the cause of the degradation and scatter in the KDF, but as yet, no cause has been found. In 1968, NASA’s buckling design criterion, NASA SP-8007, gave an empirical KDF curve that decreased with the increasing r/t (up to 2000) for metal cylinders. The same curve has been applied to composite cylinders. Recently, Takano derived a flat lower-bound KDF in terms of A- and B-basis values (99% and 90% probability with a 95% confidence level) through a statistical analysis of experimental buckling loads. The result, however, based on experimental results up to r/t = 500 and, thus, the dependency on a large range of r/t, is not clear. Thus, the authors focused on a larger range of r/t. Cylindrical shells made from carbon fiber-reinforced plastic (CFRP) were tested. The nominal radius, thickness, and length were r = 100.118 mm, t = 0.118 mm, and L = 200 mm and, thus, the r/t = 848 and length-to-radius ratio (L/r) = 2.0. Shape imperfections were also measured by using in-house laser displacement equipment. The buckling load was slightly affected by the r/t, but the reduction in the KDF was insignificant

    Buckling Test of Composite Cylindrical Shells with Large Radius Thickness Ratio

    No full text
    A buckling test of composite cylindrical shells with a radius–thickness ratio (r/t) = 893 under axial compression was conducted to investigate the effects of the radius–thickness ratio (r/t). It is known that the buckling load of cylinders shows large differences and scatter between theory and experiment. The ratio of the experimental buckling load and theoretical buckling load is called the knockdown factor (KDF). Many investigations have been conducted to find the cause of the degradation and scatter in the KDF, but as yet, no cause has been found. In 1968, NASA’s buckling design criterion, NASA SP-8007, gave an empirical KDF curve that decreased with the increasing r/t (up to 2000) for metal cylinders. The same curve has been applied to composite cylinders. Recently, Takano derived a flat lower-bound KDF in terms of A- and B-basis values (99% and 90% probability with a 95% confidence level) through a statistical analysis of experimental buckling loads. The result, however, based on experimental results up to r/t = 500 and, thus, the dependency on a large range of r/t, is not clear. Thus, the authors focused on a larger range of r/t. Cylindrical shells made from carbon fiber-reinforced plastic (CFRP) were tested. The nominal radius, thickness, and length were r = 100.118 mm, t = 0.118 mm, and L = 200 mm and, thus, the r/t = 848 and length-to-radius ratio (L/r) = 2.0. Shape imperfections were also measured by using in-house laser displacement equipment. The buckling load was slightly affected by the r/t, but the reduction in the KDF was insignificant

    Interlaminar Shear Behavior of Laminated Carbon Fiber Reinforced Plastic from Microscale Strain Distributions Measured by Sampling Moiré Technique

    No full text
    In this article, the interlaminar shear behavior of a [±45°]4s laminated carbon fiber reinforced plastic (CFRP) specimen is investigated, by utilizing microscale strain mapping in a wide field of view. A three-point bending device is developed under a laser scanning microscope, and the full-field strain distributions, including normal, shear and principal strains on the cross section of CFRP, in a three-point bending test, are measured using a developed sampling Moiré technique. The microscale shear strain concentrations at interfaces between each two adjacent layers were successfully detected and found to be positive-negative alternately distributed before damage occurrence. The 45° layers slipped to the right relative to the −45° layers, visualized from the revised Moiré phases, and shear strain distributions of the angle-ply CFRP under different loads. The absolute values of the shear strain at interfaces gradually rose with the increase of the bending load, and the sudden decrease of the shear strain peak value implied the occurrence of interlaminar damage. The evolution of the shear strain concentrations is useful in the quantitative evaluation of the potential interlaminar shear failure

    Cellulose nanofiber-introduced continuous-ramie yarn-reinforced polylactic acid filament for 3D printing : Novel fabrication process and mechanical properties

    No full text
    This study focused on reinforcing the interface of continuous-ramie yarn-reinforced polylactic acid (PLA) filaments with cellulose nanofibers (CNFs) for 3D printing applications. To realize the reinforcement effect of CNFs, the distribution of dispersed CNFs at the surface of ramie fiber is necessary. Thus, we developed a new false-untwisting process to enable the continuous dip-coating of CNF slurry while the ramie yarn is untwisted yarn. This study was designed to reveal the influence of the false-untwisting process and CNF content on the surface morphology of the processed yarn and on the mechanical properties of the yarn–PLA composite filaments. We found that the false-untwisting process achieved the formation of fuzzy CNFs. Furthermore, the tensile strength and Young’s modulus of the filaments were improved by up to 20.0% and 26.6%, respectively, compared to those of ramie yarn-reinforced PLA filaments without CNFs
    corecore