65 research outputs found

    The Diagnostic Capacity of Pre-treatment 18F-FDG PET/CT for Predicting the Extranodular Spread of Lymph Node Metastases in Patients with Oral Squamous Cell Carcinoma

    Get PDF
    The aim of this study was to evaluate the ability of pretreatment 90-min 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to predict the extranodular spread of lymph node metastases in oral squamous cell carcinoma. We retrospectively reviewed the cases of 56 patients who underwent pretreatment 18F-FDG PET/CT and surgery with neck dissection. Maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis were measured for the 56 primary sites and maximum standardized uptake value was measured for 115 lymph node levels. Extranodular spread was present at 9 lymph node levels in 7 patients. Significant differences were found in metabolic tumor volume and total lesion glycolysis of the primary site, and in lymph node maximum standardized uptake value, between patients with and without extranodular spread (p<0.05). Combining primary site total lesion glycolysis and lymph node maximum standardized uptake volume at their respective optimal cutoffs, the sensitivity, specificity, and accuracy for predicting extranodular spread were 89%, 92%, and 92%, respectively. Pretreatment 18F-FDG PET/CT is useful for predicting extranodular spread in patients with oral squamous cell carcinoma. The combined use of primary site total lesion glycolysis and lymph node maximum standardized uptake value showed greater predictive value than either predictor singly

    Association between Histological Types and Enhancement of Dynamic CT for Primary Lung Cancer

    Get PDF
    The aim of this study was to explore enhancement patterns of different types of primary lung cancers on 2-phase dynamic computed tomography (CT). This study included 217 primary lung cancer patients (141 adenocarcinomas [ADs], 48 squamous cell carcinomas [SCCs], 20 small cell lung carcinomas [SCLCs], and 8 others) who were examined using a 2-phase dynamic scan. Regions of interest were identified and mean enhancement values were calculated. After excluding the 20 SCLCs because these lesions had different clinical stages from the other cancer types, the mean attenuation values and subtractions between phases were compared between types of non-small cell lung carcinomas (NSCLCs) using the Kruskal–Wallis test. Late phase attenuation and attenuation of the late minus unenhanced phase (LMU) of SCCs were significantly higher than those of ADs (p<0.05). To differentiate SCC and AD in the late phase, a threshold of 80.21 Hounsfield units (HU) gave 52.9% accuracy. In LMU, a threshold of 52.16 HU gave 59.3% accuracy. Dynamic lung CT has the potential to aid in differentiating among NSCLC types

    AIRE illuminates the feature of medullary thymic epithelial cells in thymic carcinoma

    Get PDF
    Despite the clear distinction between cortical (cTECs) and medullary thymic epithelial cells (mTECs) in physiology, the cell of origin of thymic carcinomas (TCs) and other thymic epithelial tumors remained enigmatic. We addressed this issue by focusing on AIRE, an mTEC-specific transcriptional regulator that is required for immunological self-tolerance. We found that a large proportion of TCs expressed AIRE with typical nuclear dot morphology by immunohistochemistry. AIRE expression in TCs was supported by the RNA-seq data in the TCGA-THYM database. Furthermore, our bioinformatics approach to the recent single-cell RNA-seq data on human thymi has revealed that TCs hold molecular characteristics of multiple mTEC subpopulations. In contrast, TCs lacked the gene signatures for cTECs. We propose that TCs are tumors derived from mTECs

    CCL2 as a potential therapeutic target for clear cell renal cell carcinoma

    Get PDF
    We previously reported that the pVHL-atypical PKC-JunB pathway contributed to promotion of cell invasiveness and angiogenesis in clear cell renal cell carcinoma (ccRCC), and we detected chemokine (C-C motif) ligand-2 (CCL2) as one of downstream effectors of JunB. CCL2 plays a critical role in tumorigenesis in other types of cancer, but its role in ccRCC remains unclear. In this study, we investigated the roles and therapeutic potential of CCL2 in ccRCC. Immunohistochemical analysis of CCL2 expression for ccRCC specimens showed that upregulation of CCL2 expression correlated with clinical stage, overall survival, and macrophage infiltration. For functional analysis of CCL2 in ccRCC cells, we generated subclones of WT8 cells that overexpressed CCL2 and subclones 786-O cells in which CCL2 expression was knocked down. Although CCL2 expression did not affect cell proliferation in vitro, CCL2 overexpression enhanced and CCL2 knockdown suppressed tumor growth, angiogenesis, and macrophage infiltration in vivo. We then depleted macrophages from tumor xenografts by administration of clodronate liposomes to confirm the role of macrophages in ccRCC. Depletion of macrophages suppressed tumor growth and angiogenesis. To examine the effect of inhibiting CCL2 activity in ccRCC, we administered CCL2 neutralizing antibody to primary RCC xenografts established from patient surgical specimens. Inhibition of CCL2 activity resulted in significant suppression of tumor growth, angiogenesis, and macrophage infiltration. These results suggest that CCL2 is involved in angiogenesis and macrophage infiltration in ccRCC, and that CCL2 could be a potential therapeutic target for ccRCC

    Functional and genomic characterization of patient‐derived xenograft model to study the adaptation to mTORC1 inhibitor in clear cell renal cell carcinoma

    Get PDF
    Resistance to the mechanistic target of rapamycin (mTOR) inhibitors, which are a standard treatment for advanced clear cell renal cell carcinoma (ccRCC), eventually develops in most cases. In this study, we established a patient-derived xenograft (PDX) model which acquired resistance to the mTOR inhibitor temsirolimus, and explored the underlying mechanisms of resistance acquisition. Temsirolimus was administered to PDX model mice, and one cohort of PDX models acquired resistance after repeated passages. PDX tumors were genetically analyzed by whole-exome sequencing and detected several genetic alterations specific to resistant tumors. Among them, mutations in ANKRD12 and DNMT1 were already identified in the early passage of a resistant PDX model, and we focused on a DNMT1 mutation as a potential candidate for developing the resistant phenotype. While DNMT1 expression in temsirolimus-resistant tumors was comparable with the control tumors, DNMT enzyme activity was decreased in resistant tumors compared with controls. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated heterozygous knockdown of DNMT1 in the temsirolimus-sensitive ccRCC (786-O) cell line was shown to result in a temsirolimus-resistant phenotype in vitro and in vivo. Integrated gene profiles using methylation and microarray analyses of PDX tumors suggested a global shift for the hypomethylation status including promotor regions, and showed the upregulation of several molecules that regulate the mTOR pathway in temsirolimus-resistant tumors. Present study showed the feasibility of PDX model to explore the mechanisms of mTOR resistance acquisition and suggested that genetic alterations, including that of DNMT1, which alter the methylation status in cancer cells, are one of the potential mechanisms of developing resistance to temsirolimus

    Ad4BP/SF-1 regulates cholesterol synthesis to boost the production of steroids

    Get PDF
    Housekeeping metabolic pathways such as glycolysis are active in all cell types. In addition, many types of cells are equipped with cell-specific metabolic pathways. To properly perform their functions, housekeeping and cell-specific metabolic pathways must function cooperatively. However, the regulatory mechanisms that couple metabolic pathways remain largely unknown. Recently, we showed that the steroidogenic cell-specific nuclear receptor Ad4BP/ SF-1, which regulates steroidogenic genes, also regulates housekeeping glycolytic genes. Here, we identify cholesterogenic genes as the targets of Ad4BP/SF-1. Further, we reveal that Ad4BP/SF-1 regulates Hummr, a candidate mediator of cholesterol transport from endoplasmic reticula to mitochondria. Given that cholesterol is the starting material for steroidogenesis and is synthesized from acetyl-CoA, which partly originates from glucose, our results suggest that multiple biological processes involved in synthesizing steroid hormones are governed by Ad4BP/SF-1. To our knowledge, this study provides the first example where housekeeping and cell-specific metabolism are coordinated at the transcriptional level.This work was supported by Grants 16H05142 (K.M.), 17H06427 (K.M.), 16K08593 (T.B.), and 17J03270 (M.I.) from the Japan Society for the Promotion of Science (JSPS) KAKENHI; The Uehara Memorial Foundation (K.M.); Takeda Science Foundation (T.B.); The Shin-Nihon of Advanced Medical Research (T.B.).Supplementary information accompanies this paper at https://doi.org/10.1038/s42003-018-0020-z

    FXYD3 functionally demarcates an ancestral breast cancer stem cell subpopulation with features of drug-tolerant persisters

    Get PDF
    乳がんの再発を起こす原因細胞を解明. 京都大学プレスリリース. 2023-11-16.The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain–containing ion transport regulator 3 (FXYD3), a component of the Na⁺/K⁺ pump. Accordingly, FXYD3⁺ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3⁺ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3⁺ CSCs were sensitive to senolytic Na⁺/K⁺ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3⁺ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na⁺/K⁺ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis
    corecore