29 research outputs found

    Selective neuronal damage and Wisconsin Card Sorting Test performance in atherosclerotic occlusive disease of the major cerebral artery

    Get PDF
    In atherosclerotic internal carotid artery (ICA) or middle cerebral artery (MCA) disease, selective neuronal damage can be detected as a decrease in central benzodiazepine receptors (BZRs) in the normal-appearing cerebral cortex. This study aimed to determine whether a decrease in the BZRs in the non-infarcted cerebral cortex is associated with poor performance on the Wisconsin Card Sorting Test (WCST), which assesses executive functions

    Theory of Excitonic States in CaB6

    Full text link
    We study the excitonic states in CaB6 in terms of the Ginzburg-Landau theory. By minimizing the free energy and by comparing with experimental results, we identify two possible ground states with exciton condensation. They both break time-reversal and inversion symmetries. This leads to various magnetic and optical properties. As for magnetic properties, it is expected to be an antiferromagnet, and its spin structure is predicted. It will exhibit the magnetoelectric effect, and observed novel ferromagnetism in doped samples and in thin-film and powder samples can arise from this effect. Interesting optical phenomena such as the nonreciprocal optical effect and the second harmonic generation are predicted. Their measurement for CaB6 will clarify whether exciton condensation occurs or not and which of the two states is realized.Comment: 17 pages, 3 figure

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Silent cortical neuronal damage in atherosclerotic disease of the major cerebral arteries.

    Get PDF
    In atherosclerotic internal carotid artery (ICA) or middle cerebral artery (MCA) disease, hemodynamic compromise may cause selective neuronal damage manifested as loss of central benzodiazepine receptors (BZRs) in the normal-appearing cerebral cortex, without overt episode of stroke. To investigate the association of decreases in cortical BZRs with hemodynamic compromise and the effect of angiotensin receptor blockers (ARBs) on these receptors in patients whose atherosclerotic ICA or MCA disease is asymptomatic, we measured BZRs using positron emission tomography and (11)C-flumazenil in 79 patients with asymptomatic atherosclerotic ICA or MCA disease and no cortical infarction. Three-dimensional stereotactic surface projections were used to calculate the BZR index, a measure of abnormally decreased BZRs in the cerebral cortex within the MCA distribution. Multiple regression analysis showed this index to be positively correlated with the value of oxygen extraction fraction, with the presence of silent subcortical infarcts, and with the presence of ischemic heart disease, whereas it was negatively correlated with the treatment of hypertension with ARBs. In asymptomatic atherosclerotic ICA or MCA disease, hemodynamic compromise is associated with selective neuronal damage manifested as decreases in cortical BZRs in the noninfarcted cerebral cortex, whereas ARBs are associated with preservation of cortical BZRs
    corecore