5 research outputs found

    Correlation analysis of the rates of solvolysis of 4-bromopiperidine: A reaction following a Grob fragmentation pathway

    Get PDF
    A Grunwald-Winstein treatment of the specific rates of solvolysis of 4-bromopiperidine gives for aqueous ethanol, methanol, acetone, and dioxane a very good logarithmic correlation against the YBr solvent ionizing power values with a slope (m value) of 0.46±0.02, consistent with the operation of a synchronous Grob fragmentation mechanism. When the organic component of the solvent is 2,2,2-trifluoroethanol (TFE), the data points show a negative deviation, consistent with an appreciable deactivating interaction of the acidic TFE component of the solvent with the lone-pair of electrons present on the nitrogen

    Correlation of the Rates of Solvolysis of Two Arenesulfonyl Chlorides and of trans-β-Styrenesulfonyl Chloride – Precursors in the Development of New Pharmaceuticals

    Get PDF
    Additional specific rates of solvolysis have been determined, mainly in fluoroalcohol containing solvents, for benzenesulfonyl chloride (1) and p-nitrobenzene-sulfonyl chloride (2). For trans-β-styrenesulfonyl chloride (3), a study has been carried out in 43 pure and binary solvents, covering a wide range of hyroxylic solvent systems. For the specific rates of solvolyses of each of the three substrates, a good correlation was obtained over the full range of solvents when the extended Grunwald-Winstein equation was applied. The sensitivities to changes in solvent nucleophilicity and solvent ionizing power are similar to values determined earlier and an SN2 process is proposed. For 3, kinetic solvent isotope effects of 1.46 for kH2O/kD2O and 1.76 for kMeOH/kMeOD were determined. These are also compared to literature values for other sulfonyl chlorides

    Correlation of the Rates of Solvolysis of Two Arenesulfonyl Chlorides and of trans-β-Styrenesulfonyl Chloride — Precursors in the Development of New Pharmaceuticals

    No full text
    Additional specific rates of solvolysis have been determined, mainly in fluoroalcohol containing solvents, for benzenesulfonyl chloride (1) and p-nitrobenzenesulfonyl chloride (2). For trans-β-styrenesulfonyl chloride (3), a study has been carried out in 43 pure and binary solvents, covering a wide range of hyroxylic solvent systems. For the specific rates of solvolyses of each of the three substrates, a good correlation was obtained over the full range of solvents when the extended Grunwald-Winstein equation was applied. The sensitivities to changes in solvent nucleophilicity and solvent ionizing power are similar to values determined earlier and an SN2 process is proposed. For 3, kinetic solvent isotope effects of 1.46 for kH2O/kD2O and 1.76 for kMeOH/kMeOD were determined. These are also compared to literature values for other sulfonyl chlorides
    corecore