1,568 research outputs found
Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling
Background: The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. Methods: BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 μg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1β, and TNF-α levels were analyzed by ELISA. Results: Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. Conclusions: Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain. © 2019 The Author(s).1
Effects of Interleukin-10 Polymorphisms, Helicobacter pylori Infection, and Smoking on the Risk of Noncardia Gastric Cancer
OBJECTIVE: Both variations in the interleukin-10 (IL10) gene and environmental factors are thought to influence inflammation and gastric carcinogenesis. Therefore, we investigated the associations between IL10 polymorphisms, Helicobacter pylori (H. pylori) infection, and smoking in noncardia gastric carcinogenesis in Koreans. METHODS: We genotyped three promoter polymorphisms (-1082A>G, -819T>C, and -592 A>C) of IL10 in a case-control study of 495 noncardia gastric cancer patients and 495 sex- and age-matched healthy controls. Multiple logistic regression models were used to detect the effects of IL10 polymorphisms, H. pylori infection, and smoking on the risk of gastric cancer, which was stratified by the histological type of gastric cancer. RESULTS: The IL10-819C and -592C alleles were found to have complete linkage disequilibrium, and all three IL10 polymorphisms were associated with an increased risk of intestinal-type noncardia gastric cancer. These associations were observed only in H. pylori-positive subjects and current smokers. A statistically significant interaction between the IL10-592 genotype and H. pylori infection on the risk of intestinal-type gastric cancer was observed (P for interaction = 0.047). In addition, H. pylori-positive smokers who were carriers of either the IL10-1082G (OR [95% CI] = 17.76 [6.17-51.06]) or the -592C (OR [95% CI] = 8.37 [2.79-25.16]) allele had an increased risk of intestinal-type gastric cancer compared to H. pylori-negative nonsmokers homozygous for IL10-1082A and -592A, respectively. The interaction between the IL10-1082 polymorphism and the combined effects of H. pylori infection and smoking tended towards significance (P for interaction = 0.080). CONCLUSIONS: Inflammation-related genetic variants may interact with H. pylori infection and smoking to increase the risk of noncardia gastric cancer, particularly the intestinal-type. These findings may be helpful in identifying individuals at an increased risk for developing noncardia gastric cancer
Response of the primary auditory and non-auditory cortices to acoustic stimulation: A manganese-enhanced MRI study
Structural and functional features of various cerebral cortices have been extensively explored in neuroscience research. We used manganese-enhanced MRI, a non-invasive method for examining stimulus-dependent activity in the whole brain, to investigate the activity in the layers of primary cortices and sensory, such as auditory and olfactory, pathways under acoustic stimulation. Male Sprague-Dawley rats, either with or without exposure to auditory stimulation, were scanned before and 24-29 hour after systemic MnCl2 injection. Cortex linearization and layer-dependent signal extraction were subsequently performed for detecting layer-specific cortical activity. We found stimulus-dependent activity in the deep layers of the primary auditory cortex and the auditory pathways. The primary sensory and visual cortices also showed the enhanced activity, whereas the olfactory pathways did not. Further, we performed correlation analysis of the signal intensity ratios among different layers of each cortex, and compared the strength of correlations between with and without the auditory stimulation. In the primary auditory cortex, the correlation strength between left and right hemisphere showed a slight but not significant increase with the acoustic simulation, whereas, in the primary sensory and visual cortex, the correlation coefficients were significantly smaller. These results suggest the possibility that even though the primary auditory, sensory, and visual cortices showed enhanced activity to the auditory stimulation, these cortices had different associations for auditory processing in the brain network.open0
A study assessing the association of glycated hemoglobin a1C (HbA1C) associated variants with HbA1C, chronic kidney disease and diabetic retinopathy in populations of asian ancestry
10.1371/journal.pone.0079767PLoS ONE811-POLN
Regulation of Oxidative Stress Response by CosR, an Essential Response Regulator in Campylobacter jejuni
CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni
Oligo- and dsDNA-mediated genome editing using a tetA dual selection system in Escherichia coli
The ability to precisely and seamlessly modify a target genome is needed for metabolic engineering and synthetic biology techniques aimed at creating potent biosystems. Herein, we report on a promising method in Escherichia coli that relies on the insertion of an optimized tetA dual selection cassette followed by replacement of the same cassette with short, single-stranded DNA (oligos) or long, double-stranded DNA and the isolation of recombinant strains by negative selection using NiCl2. This method could be rapidly and successfully used for genome engineering, including deletions, insertions, replacements, and point mutations, without inactivation of the methyl-directed mismatch repair (MMR) system and plasmid cloning. The method we describe here facilitates positive genome-edited recombinants with selection efficiencies ranging from 57 to 92%. Using our method, we increased lycopene production (3.4-fold) by replacing the ribosome binding site (RBS) of the rate-limiting gene (dxs) in the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway with a strong RBS. Thus, this method could be used to achieve scarless, proficient, and targeted genome editing for engineering E. coli strains
Systematic review of the evidence relating FEV1 decline to giving up smoking
<p>Abstract</p> <p>Background</p> <p>The rate of forced expiratory volume in 1 second (FEV<sub>1</sub>) decline ("beta") is a marker of chronic obstructive pulmonary disease risk. The reduction in beta after quitting smoking is an upper limit for the reduction achievable from switching to novel nicotine delivery products. We review available evidence to estimate this reduction and quantify the relationship of smoking to beta.</p> <p>Methods</p> <p>Studies were identified, in healthy individuals or patients with respiratory disease, that provided data on beta over at least 2 years of follow-up, separately for those who gave up smoking and other smoking groups. Publications to June 2010 were considered. Independent beta estimates were derived for four main smoking groups: never smokers, ex-smokers (before baseline), quitters (during follow-up) and continuing smokers. Unweighted and inverse variance-weighted regression analyses compared betas in the smoking groups, and in continuing smokers by amount smoked, and estimated whether beta or beta differences between smoking groups varied by age, sex and other factors.</p> <p>Results</p> <p>Forty-seven studies had relevant data, 28 for both sexes and 19 for males. Sixteen studies started before 1970. Mean follow-up was 11 years. On the basis of weighted analysis of 303 betas for the four smoking groups, never smokers had a beta 10.8 mL/yr (95% confidence interval (CI), 8.9 to 12.8) less than continuing smokers. Betas for ex-smokers were 12.4 mL/yr (95% CI, 10.1 to 14.7) less than for continuing smokers, and for quitters, 8.5 mL/yr (95% CI, 5.6 to 11.4) less. These betas were similar to that for never smokers. In continuing smokers, beta increased 0.33 mL/yr per cigarette/day. Beta differences between continuing smokers and those who gave up were greater in patients with respiratory disease or with reduced baseline lung function, but were not clearly related to age or sex.</p> <p>Conclusion</p> <p>The available data have numerous limitations, but clearly show that continuing smokers have a beta that is dose-related and over 10 mL/yr greater than in never smokers, ex-smokers or quitters. The greater decline in those with respiratory disease or reduced lung function is consistent with some smokers having a more rapid rate of FEV<sub>1 </sub>decline. These results help in designing studies comparing continuing smokers of conventional cigarettes and switchers to novel products.</p
J/psi production from proton-proton collisions at sqrt(s) = 200 GeV
J/psi production has been measured in proton-proton collisions at sqrt(s)=
200 GeV over a wide rapidity and transverse momentum range by the PHENIX
experiment at RHIC. Distributions of the rapidity and transverse momentum,
along with measurements of the mean transverse momentum and total production
cross section are presented and compared to available theoretical calculations.
The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/-
0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/-
0.16(sys) GeV/c.Comment: 326 authors, 6 pages text, 4 figures, 1 table, RevTeX 4. To be
submitted to PRL. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …