98 research outputs found

    Isolation of human Dna2 endonuclease and characterization of its enzymatic properties

    Get PDF
    In eukaryotes, the creation of ligatable nicks in DNA from flap structures generated by DNA polymerase δ-catalyzed displacement DNA synthesis during Okazaki fragment processing depends on the combined action of Fen1 and Dna2. These two enzymes contain partially overlapping but distinct endonuclease activities. Dna2 is well-suited to process long flaps, which are converted to nicks by the subsequent action of Fen1. In this report, we purified human Dna2 as a recombinant protein from human cells transfected with the cDNA of the human homologue of Saccharomyces cerevisiae Dna2. We demonstrated that the purified human Dna2 enzyme contains intrinsic endonuclease and DNA-dependent ATPase activities, but is devoid of detectable DNA helicase activity. We determined a number of enzymatic properties of human Dna2 including its substrate specificity. When both 5′ and 3′ tailed ssDNAs were present in a substrate, such as a forked-structured one, both single-stranded regions were cleaved by human Dna2 (hDna2) with equal efficiency. Based on this and other properties of hDna2, it is likely that this enzyme facilitates the removal of 5′ and 3′ regions in equilibrating flaps that are likely to arise during the processing of Okazaki fragments in human cells

    International volunteer tourism and youth travelers – an emerging tourism trend

    Get PDF
    This study attempted to examine the intricate associations among volunteer tourism (VT) motivations, overall image, satisfaction, trust, and the influence of these relationships on behavioral intentions among youth travelers. Our findings from the structural analysis indicated that VT motivations significantly contributed to building positive images, inducing satisfactory VT experiences, and building trust with a VT organization. Our results also demonstrated the competence of the higher-order structure of VT motivations in explicating the intention formation. In addition, the overall image, satisfaction, and trust played an important mediating role. Moreover, satisfaction with VT experiences was of utmost significance in determining intentions

    In vivo and in vitro studies of Mgs1 suggest a link between genome instability and Okazaki fragment processing

    Get PDF
    The non-essential MGS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes an enzyme containing both DNA-dependent ATPase and DNA annealing activities. MGS1 appears to function in post-replicational repair processes that contribute to genome stability. In this study, we identified MGS1 as a multicopy suppressor of the temperature-sensitive dna2Δ405N mutation, a DNA2 allele lacking the N-terminal 405 amino acid residues. Mgs1 stimulates the structure-specific nuclease activity of Rad27 (yeast Fen1 or yFen1) in an ATP-dependent manner. ATP binding but not hydrolysis was sufficient for the stimulatory effect of Mgs1, since non-hydrolyzable ATP analogs are as effective as ATP. Suppression of the temperature-sensitive growth defect of dna2Δ405N required the presence of a functional copy of RAD27, indicating that Mgs1 suppressed the dna2Δ405N mutation by increasing the activity of yFen1 (Rad27) in vivo. Our results provide in vivo and in vitro evidence that Mgs1 is involved in Okazaki fragment processing by modulating Fen1 activity. The data presented raise the possibility that the absence of MGS1 may impair the processing of Okazaki fragments, leading to genomic instability

    Enzymatic properties of the Caenorhabditis elegans Dna2 endonuclease/helicase and a species-specific interaction between RPA and Dna2

    Get PDF
    In both budding and fission yeasts, a null mutation of the DNA2 gene is lethal. In contrast, a null mutation of Caenorhabditis elegans dna2(+) causes a delayed lethality, allowing survival of some mutant C.elegans adults to F2 generation. In order to understand reasons for this difference in requirement of Dna2 between these organisms, we examined the enzymatic properties of the recombinant C.elegans Dna2 (CeDna2) and its interaction with replication-protein A (RPA) from various sources. Like budding yeast Dna2, CeDna2 possesses DNA-dependent ATPase, helicase and endonuclease activities. The specific activities of both ATPase and endonuclease activities of the CeDna2 were considerably higher than the yeast Dna2 (∼10- and 20-fold, respectively). CeDna2 endonuclease efficiently degraded a short 5′ single-stranded DNA tail (<10 nt) that was hardly cleaved by ScDna2. Both endonuclease and helicase activities of CeDna2 were stimulated by CeRPA, but not by human or yeast RPA, demonstrating a species-specific interaction between Dna2 and RPA. These and other enzymatic properties of CeDna2 described in this paper may shed light on the observation that C.elegans is less stringently dependent on Dna2 for its viability than Saccharomyces cerevisiae. We propose that flaps generated by DNA polymerase δ-mediated displacement DNA synthesis are mostly short in C.elegans eukaryotes, and hence less dependent on Dna2 for viability

    Proteomic analysis of pregnancy-related proteins from pig uterus endometrium during pregnancy

    Get PDF
    Many important molecular events associated with implantation and development occur within the female reproductive tract, especially within the uterus endometrium, during pregnancy periods. The endometrium includes the mucosal lining of the uterus, which provides a suitable site for implantation and development of a fertilized egg and fetus. To date, the molecular cascades in the uterus endometrium during pregnancy periods in pigs have not been elucidated fully. In this study, we compared the functional regulated proteins in the endometrium during pregnancy periods with those in non-pregnant conditions and investigated changes in expression patterns during pregnancy (days 40, 70, and 93) using two-dimensional gel electrophoresis (2-DE) and western blotting. The functional regulated proteins were identified and discovered from differentially expressed proteins in the uterus endometrium during pregnancy. We discovered 820 protein spots in a proteomic analysis of uterus endometrium tissues with 2-DE gels. We identified 63 of the 98 proteins regulated differentially among non-pregnant and pregnant tissues (matched and unmatched spots). Interestingly, 10 of these 63 proteins are development-, cytoskeleton- and chaperon-related proteins such as transferrin, protein DJ-1, transgelin, galectin-1, septin 2, stathmin 1, cofilin 1, fascin 1, heat shock protein (HSP) 90β and HSP 27. The specific expression patterns of these proteins in the endometrium during pregnancy were confirmed by western blotting. Our results suggest that the expressions of these genes involved in endometrium function and endometrium development from early to late gestation are associated with the regulation of endometrium development for maintaining pregnancy

    Caroli's disease misdiagnosed as intraductal papillary neoplasm of the bile duct

    Get PDF
    Caroli's disease is a rare autosomal-recessive disorder caused by malformation of the ductal plate during embryonic development. Although it is present at birth, Caroli's disease is typically not diagnosed until between the second and fourth decades of life, as it was in the present patient. Here we report a rare case of Caroli's disease limited to one liver segment, which was initially misdiagnosed as an intraductal papillary neoplasm of the bile duct. The asymptomatic patient was treated with liver segmentectomy
    corecore