153 research outputs found

    Possible spin-triplet ff-wave pairing due to disconnected Fermi surfaces in Nax_xCoO2y_2\cdot yH2_2O

    Full text link
    We propose that spin-triplet pairing mechanism due to disconnected Fermi surfaces proposed in our previous study [Phys. Rev. B {\bf 63} 174507 (2001)] may be at work in a recently discovered superconductor Nax_xCoO2_2 y\cdot y H2_2O. We introduce a single band effective model that takes into account the pocket-like Fermi surfaces along with the van Hove singularity near the K point found in the band calculation results. Applying fluctuation exchange method and solving the linearized {\'E}liashberg equation, the most dominant pairing is found to have spin-triplet ff-wave symmetry, where the nodes of the gap function do not intersect the pocket Fermi surfaces. Presence of finite TcT_c is suggested in sharp contrast with cases when the gap nodes intersect the Fermi surface.Comment: A revised version of the paper, which has been accepted for publication in Physical Reiview Letters. Some sentences and paragraphs added in the discussion part (page 4

    Local density of states as a probe for tunneling magnetoresistance effect: application to ferrimagnetic tunnel junctions

    Full text link
    We investigate the tunneling magnetoresistance (TMR) effect using the lattice models which describe the magnetic tunnel junctions (MTJ). First, taking a conventional ferromagnetic MTJ as an example, we show that the product of the local density of states (LDOS) at the center of the barrier traces the TMR effect qualitatively. The LDOS inside the barrier has the information on the electrodes and the electron tunneling through the barrier, which enables us to easily evaluate the tunneling conductance more precisely than the conventional Julliere's picture. We then apply this method to the MTJs with collinear ferrimagnets and antiferromagnets. We find that the TMR effect in the ferrimagnetic and antiferromagnetic MTJs changes depending on the interfacial magnetic structures originating from the sublattice structure, which can also be captured by the LDOS. Our findings will reduce the computational cost for the qualitative evaluation of the TMR effect, and be useful for a broader search for the materials which work as the TMR devices showing high performance.Comment: 11 pages, 11 figure

    A unified origin for the 3D magnetism and superconductivity in Nax_xCoO2_2

    Full text link
    We analyze the origin of the three dimensional (3D) magnetism observed in nonhydrated Na-rich Nax_xCoO2_2 within an itinerant spin picture using a 3D Hubbard model. The origin is identified as the 3D nesting between the inner and outer portions of the Fermi surface, which arise due to the local minimum structure of the a1ga_{1g} band at the Γ\Gamma-A line. The calculated spin wave dispersion strikingly resembles the neutron scattering result. We argue that this 3D magnetism and the spin fluctuations responsible for superconductivity in the hydrated systems share essentially the same origin.Comment: 5pages, 6figure

    Competition between singlet and triplet pairings in Na_xCoO_2 yH_2O

    Full text link
    We discuss the pairing symmetry of a cobaltate superconductor Nax_xCoO2y_2\cdot y H2_2O by adopting an effective single band model that takes into account the ege_g' hole pockets, as discussed in our previous paper [to appear in Phys. Rev. Lett.] Here we consider the off-site repulsions in addition to the on-site repulsion considered in our previous study. We show that the spin-triplet f-wave pairing proposed in our previous study is robust to some extent even in the presence of off-site repulsions. However, f-wave pairing gives way to singlet pairings for sufficiently large values of off-site repulsions. Among the singlet pairings, i-wave and extended s-wave pairings are good candidates which do not break time reversal symmetry below TcT_c in agreement with the experiments.Comment: 12 page

    Algorithm for spin symmetry operation search

    Full text link
    A spin space group provides a suitable way to fully exploit the symmetry of a spin arrangement with a negligible spin-orbit coupling. There has been a growing interest in applying spin symmetry analysis with the spin space group in the field of magnetism. However, there is no established algorithm to search for spin symmetry operations of the spin space group. This paper presents an exhaustive algorithm for determining spin symmetry operations of commensurate spin arrangements. The present algorithm searches for spin symmetry operations from the symmetry operations of a corresponding nonmagnetic crystal structure and determines their spin-rotation parts by solving a Procrustes problem. An implementation is distributed under a permissive free software license in spinspg v0.1.1: https://github.com/spglib/spinspg.Comment: The implementation will be released after publicatio
    corecore