1 research outputs found

    Fabrication of Silicon Nanowire Metal-Oxide-Semiconductor Capacitors with Al2O3/TiO2/Al2O3 Stacked Dielectric Films for the Application to Energy Storage Devices

    No full text
    Silicon nanowire (SiNW) metal-oxide-semiconductor (MOS) capacitors with Al2O3/TiO2/Al2O3 (ATA) stacked dielectric films were fabricated by metal-assisted chemical etching (MACE) and atomic layer deposition (ALD). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images revealed that SiNWs were conformally coated with ATA although the cross-sectional shapes of MACE-SiNWs were non-uniform and sharp spikes can be seen locally. The dielectric capacitance density of 5.9 μF/cm2 at V = −4 V of the perfect accumulation region was achieved due to the combination of the large surface area of the SiNW array and the high dielectric constant of ATA. The capacitance changed exponentially with the voltage at V < −4.3 V and the capacitance of 84 μF/cm2 was successfully achieved at V = −10 V. It was revealed that not only 3D structure and high-k material but also local nanostructure of SiNWs and stacked dielectric layers could contribute to the considerable high capacitance
    corecore