68 research outputs found

    Higher-order topological superconductor phases in a multilayer system

    Full text link
    Higher-order topological phases are gapped phases of matter that host gapless corner or hinge modes. For the case of superconductors, corner or hinge modes are gapless Majorana modes or Majorana zero modes. To construct 3d higher-order topological superconductors, we consider a topological-insulator/superconductor multilayer under in-plane Zeeman coupling. We found three different types of higher-order topological superconductor phases, a second-order topological superconductor phase with Majorana hinge flat bands, a second-order Dirac superconductor phase with surface Majorana cones and Majorana hinge arcs, and nodal-line superconductor phases with drumhead surface states and Majorana hinge arcs

    Particle Propagator of Spin Calogero-Sutherland Model

    Full text link
    Explicit-exact expressions for the particle propagator of the spin 1/2 Calogero-Sutherland model are derived for the system of a finite number of particles and for that in the thermodynamic limit. Derivation of the expression in the thermodynamic limit is also presented in detail. Combining this result with the hole propagator obtained in earlier studies, we calculate the spectral function of the single particle Green's function in the full range of the energy and momentum space. The resultant spectral function exhibits power-law singularity characteristic to correlated particle systems in one dimension.Comment: 43 pages, 6 figure

    Energy-twisted boundary condition and response in one-dimensional quantum many-body systems

    Full text link
    Thermal transport in condensed matter systems is traditionally formulated as a response to a background gravitational field. In this work, we seek a twisted-boundary-condition formalism for thermal transport in analogy to the U(1)U(1) twisted boundary condition for electrical transport. Specifically, using the transfer matrix formalism, we introduce what we call the energy-twisted boundary condition, and study the response of the system to the boundary condition. As specific examples, we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT, the Ising model, and disordered fermion models. We also identify the boost deformation of integrable systems as a bulk counterpart of the energy-twisted boundary condition. We show that the boost deformation of the free fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the boost deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the boost-deformed Bethe ansatz equations
    • …
    corecore