238 research outputs found

    Time-locked perceptual fading induced by visual transients

    Get PDF
    After prolonged fixation, a stationary object placed in the peripheral visual field fades and disappears from our visual awareness, especially at low luminance contrast (the Troxler effect). Here, we report that similar fading can be triggered by visual transients, such as additional visual stimuli flashed near the object, apparent motion, or a brief removal of the object itself (blinking). The fading occurs even without prolonged adaptation and is time-locked to the presentation of the visual transients. Experiments show that the effect of a flashed object decreased monotonically as a function of the distance from the target object. Consistent with this result, when apparent motion, consisting of a sequence of flashes was presented between stationary disks, these target disks perceptually disappeared as if erased by the moving object. Blinking the target disk, instead of flashing an additional visual object, turned out to be sufficient to induce the fading. The effect of blinking peaked around a blink duration of 80 msec. Our findings reveal a unique mechanism that controls the visibility of visual objects in a spatially selective and time-locked manner in response to transient visual inputs. Possible mechanisms underlying this phenomenon will be discussed

    Efficient Algorithms for Searching the Minimum Information Partition in Integrated Information Theory

    Full text link
    The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information (Ξ¦\Phi) in the brain is related to the level of consciousness. IIT proposes that to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that if a measure of Ξ¦\Phi satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of Ξ¦\Phi is submodular, the later versions are not. In this study, we empirically explore to what extent the algorithm can be applied to the non-submodular measures of Ξ¦\Phi by evaluating the accuracy of the algorithm in simulated data and real neural data. We find that the algorithm identifies the MIP in a nearly perfect manner even for the non-submodular measures. Our results show that the algorithm allows us to measure Ξ¦\Phi in large systems within a practical amount of time

    Social Distance Evaluation in Human Parietal Cortex

    Get PDF
    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. β€œclose friends” β€œhigh lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space

    Distractibility in daily life is reflected in the structure and function of human parietal cortex

    Get PDF
    We all appreciate that some of our friends and colleagues are more distractible than others. This variability can be captured by pencil and paper questionnaires in which individuals report such cognitive failures in their everyday life. Surprisingly, these self-report measures have high heritability, leading to the hypothesis that distractibility might have a basis in brain structure. In a large sample of healthy adults, we demonstrated that a simple self-report measure of everyday distractibility accurately predicted gray matter volume in a remarkably focal region of left superior parietal cortex. This region must play a causal role in reducing distractibility, because we found that disrupting its function with transcranial magnetic stimulation increased susceptibility to distraction. Finally, we showed that the self-report measure of distractibility reliably predicted our laboratory-based measure of attentional capture. Our findings distinguish a critical mechanism in the human brain causally involved in avoiding distractibility, which, importantly, bridges self-report judgments of cognitive failures in everyday life and a commonly used laboratory measure of distractibility to the structure of the human brai

    Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain

    Get PDF
    The human brain exhibits remarkable interindividual variability in cortical architecture. Despite extensive evidence for the behavioral consequences of such anatomical variability in individual cortical regions, it is unclear whether and how different cortical regions covary in morphology. Using a novel approach that combined noninvasive cortical functional mapping with whole-brain voxel-based morphometric analyses, we investigated the anatomical relationship between the functionally mapped visual cortices and other cortical structures in healthy humans. We found a striking anticorrelation between the gray matter volume of primary visual cortex and that of anterior prefrontal cortex, independent from individual differences in overall brain volume. Notably, this negative correlation formed along anatomically separate pathways, as the dorsal and ventral parts of primary visual cortex showed focal anticorrelation with the dorsolateral and ventromedial parts of anterior prefrontal cortex, respectively. Moreover, a similar inverse correlation was found between primary auditory cortex and anterior prefrontal cortex, but no anatomical relationship was observed between other visual cortices and anterior prefrontal cortex. Together, these findings indicate that an anatomical trade-off exists between primary sensory cortices and anterior prefrontal cortex as a possible general principle of human cortical organization. This new discovery challenges the traditional view that the sizes of different brain areas simply scale with overall brain size and suggests the existence of shared genetic or developmental factors that contributes to the formation of anatomically and functionally distant cortical regions

    Human middle temporal cortex, perceptual bias, and perceptual memory for ambiguous three-dimensional motion

    Get PDF
    When faced with inconclusive or conflicting visual input human observers experience one of multiple possible perceptions. One factor that determines perception of such an ambiguous stimulus is how the same stimulus was perceived on previous occasions, a phenomenon called perceptual memory. We examined perceptual memory of an ambiguous motion stimulus while applying transcranial magnetic stimulation (TMS) to the motion-sensitive areas of the middle temporal cortex (hMT+). TMS increased the predominance of whichever perceptual interpretation was most commonly reported by a given observer at baseline, with reduced perception of the less favored interpretation. This increased incidence of the preferred percept indicates impaired long-term buildup of perceptual memory traces that normally act against individual percept biases. We observed no effect on short-term memory traces acting from one presentation to the next. Our results indicate that hMT+ is important for the long-term buildup of perceptual memory for ambiguous motion stimuli
    • …
    corecore