42 research outputs found

    Bursts and Horizontal Evolution of DNA Transposons in the Speciation of Pseudotetraploid Salmonids

    Get PDF
    Background: Several genome duplications have occurred in the evolutionary history of teleostfish. In returning to a stable diploid state, the polyploid genome reorganized, and large portions arelost, while the fish lines evolved to numerous species. Large scale transposon movement has beenpostulated to play an important role in the genome reorganization process. We analyzed the DNAsequence of several large loci in Salmo salar and other species for the presence of DNA transposonfamilies.Results: We have identified bursts of activity of 14 families of DNA transposons (12 Tc1-like and2 piggyBac-like families, including 11 novel ones) in genome sequences of Salmo salar. Several ofthese families have similar sequences in a number of closely and distantly related fish, lamprey, andfrog species as well as in the parasite Schistosoma japonicum. Analysis of sequence similaritiesbetween copies within the families of these bursts demonstrates several waves of transpositionactivities coinciding with salmonid species divergence. Tc1-like families show a master gene-likecopying process, illustrated by extensive but short burst of copying activity, while the piggyBac-likefamilies show a more random copying pattern. Recent families may include copies with an openreading frame for an active transposase enzyme.Conclusion: We have identified defined bursts of transposon activity that make use of masterslaveand random mechanisms. The bursts occur well after hypothesized polyploidy events andcoincide with speciation events. Parasite-mediated lateral transfer of transposons are implicated

    Regulation and Expression of Sexual Differentiation Factors in Embryonic and Extragonadal Tissues of Atlantic salmon

    Get PDF
    Background: The products of cyp19, dax, foxl2, mis, sf1 and sox9 have each been associated with sex-determiningprocesses among vertebrates. We provide evidence for expression of these regulators very early in salmoniddevelopment and in tissues outside of the hypothalamic-pituitary-adrenal/gonadal (HPAG) axis. Although thefunction of these factors in sexual differentiation have been defined, their roles in early development before sexualfate decisions and in tissues beyond the brain or gonad are essentially unknown.Results: Bacterial artificial chromosomes containing salmon dax1 and dax2, foxl2b and mis were isolated and theregulatory regions that control their expression were characterized. Transposon integrations are implicated in theshaping of the dax and foxl2 loci. Splice variants for cyp19b1 and mis in both embryonic and adult tissues weredetected and characterized. We found that cyp19b1 transcripts are generated that contain 5’-untranslated regionsof different lengths due to cryptic splicing of the 3’-end of intron 1. We also demonstrate that salmon mistranscripts can encode prodomain products that present different C-termini and terminate before translation of theMIS hormone. Regulatory differences in the expression of two distinct aromatases cyp19a and cyp19b1 are exerted,despite transcription of their transactivators (ie; dax1, foxl2, sf1) occurring much earlier during embryonicdevelopment.Conclusions: We report the embryonic and extragonadal expression of dax, foxl2, mis and other differentiationfactors that indicate that they have functions that are more general and not restricted to steroidogenesis andgonadogenesis. Spliced cyp19b1 and mis transcripts are generated that may provide regulatory controls for tissueordevelopment-specific activities. Selection of cyp19b1 transcripts may be regulated by DAX-1, FOXL2 and SF-1complexes that bind motifs in intron 1, or by signals within exon 2 that recruit splicing factors, or both. Thepotential translation of proteins bearing only the N-terminal MIS prodomain may modulate the functions of otherTGF b family members in different tissues. The expression patterns of dax1 early in salmon embryogenesisimplicate its role as a lineage determination factor. Other roles for these factors during embryogenesis and outsidethe HPAG axis are discussed

    Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes in salmonids. The GH gene (<it>gh</it>) in salmonids is represented by duplicated, non-allelic isoforms designated as <it>gh1 </it>and <it>gh2</it>. We have isolated and characterized <it>gh</it>-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook salmon (<it>Salmo salar </it>and <it>Oncorhynchus tshawytscha</it>) in order to further elucidate our understanding of the conservation and regulation of these loci.</p> <p>Results</p> <p>BACs containing <it>gh1 </it>and <it>gh2 </it>from both Atlantic and Chinook salmon were assembled, annotated, and compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1, myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations relative to <it>gh1 </it>and <it>gh2</it>. Viability of each of these genes was examined by PCR. We show that transposon insertions have occurred differently in the promoters of <it>gh</it>, within and between each species. Other differences within the promoters and intronic and 3'-flanking regions of the four <it>gh </it>genes provide evidence that they have distinct regulatory modes and possibly act to function differently and/or during different times of salmonid development.</p> <p>Conclusion</p> <p>A core proximal promoter for transcription of both <it>gh1 </it>and <it>gh2 </it>is conserved between the two species of salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of <it>gh1 </it>and <it>gh2</it>. Additionally, organization of transposon families into the BACs containing <it>gh1 </it>and for the BACs containing <it>gh2</it>, are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the <it>gh1</it>- and <it>gh2</it>-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and other <it>Oncorhynchus </it>GH1s are strikingly different in comparison to the other GHs and this change is not apparent in the surrounding non-coding sequences.</p

    Characterization of Promoter Activities of Four Different Japanese Flounder Promoters in Transgenic Zebrafish

    Get PDF
    An important consideration in transgenic research is the choice of promoter for regulating the expression of a foreign gene. In this study several tissue-specific and inducible promoters derived from Japanese flounder Paralichthys olivaceus were identified, and their promoter activity was examined in transgenic zebrafish. The 5′ flanking regions of the Japanese flounder complement component C3, gelatinase B, keratin, and tumor necrosis factor (TNF) genes were linked to green fluorescence protein (GFP) as a reporter gene. The promoter regulatory constructs were introduced into fertilized zebrafish eggs. As a result we obtained several stable transgenic zebrafish that displayed green fluorescence in different tissues. Complement component C3 promoter regulated GFP expression in liver, and gelatinase B promoter regulated it in the pectoral fin and gills. Keratin promoter regulated GFP expression in skin and liver. TNF gene promoter regulated GFP expression in the pharynx and heart. TNF promoter had lipoplysaccharide-inducible activity, such that when transgenic embryos were immersed lipopolysaccharide, GFP expression increased in the epithelial tissues. These 4 promoters regulated the expression of GFP in different patterns in transgenic zebrafish

    Preliminary characterization of pathogen-detection activities of serum antibodies from the banded houndshark Triakis scyllium

    No full text
    Antibodies of cartilaginous fish are of scientific interest due to their phylogenetic position. In the present study, we developed antiserum against IgM of the banded houndshark, Triakis scyllium, and characterized binding activity of the IgM against fish pathogenic bacteria.Pentameric and monomeric IgM antibodies were separated by gel filtration chromatography using high performance liquid chromatography and SDS–PAGE. Antisera were developed by immunizing rabbits with unfractionated IgM antibodies separated by SDS–PAGE electrophoresis.Shark serum antibodies were found to have binding affinity for Aeromonas hydrophila, Vibrio anguillarum, Edwardsiella tarda, and Pseudomonas plecoglossicida antigens but not Lactococcus garvieae by enzyme-linked immunosorbent assay.We speculate the binding activities of shark antibodies may confer protection against certain bacterial pathogens.公開日: 2022-07-0
    corecore