11 research outputs found

    Experimental confirmation of physical metal penetration generation and press casting production considering molten metal's pressure control

    No full text
    This paper presents a technique for controlling the pressure of a molten metal when using a new type of iron casting method called sand mold press casting to realize high productivity and obtain high-quality products. The past test results using this method showed a casting yield of 90% to 95%, while conventional methods only show a casting yield of 60% to 70%. Although the press casting method does not require a sprue cup or runner channel casting defects such as metal penetration are often caused by the high pressure in the high-velocity pressing part of this casting process. Therefore, we proposed a pressure control method with a mathematical model of molten metal pressure, and with it we achieved experimental confirmation of the successful production of brake drums at different pressing temperatures. Results show that the proposed pressing control method can realize sound, penetration-free casting production. However, the theoretical analysis and design of this pressing process had not previously been studied sufficiently, and therefore this paper presents the theoretical design algorithm for the process as well as its experimental confirmation

    Continuous Mass Measurement on Conveyor Belt

    No full text

    The APOA1 p.Leu202Arg variant potentially causes autosomal recessive cardiac amyloidosis

    Get PDF
    ApoA-I amyloidosis is an extremely rare form of systemic amyloidosis that commonly involves the heart, kidneys, and liver. ApoA-I amyloidosis is caused by amyloidogenic variants of APOA1 that are inherited in an autosomal dominant manner. Here, we report a 69-year-old man with sporadic cardiac amyloidosis who was born to consanguineous parents and carried a homozygous variant of p.Leu202Arg in APOA1
    corecore