96 research outputs found

    Clinical Application of MPRAGE Wave Controlled Aliasing in Parallel Imaging (Wave-CAIPI): A Comparative Study with MPRAGE GRAPPA

    Get PDF
    PURPOSE: To compare reliability and elucidate clinical application of magnetization-prepared rapid gradient-echo (MPRAGE) with 9-fold acceleration by using wave-controlled aliasing in parallel imaging (Wave-CAIPI 3 × 3) in comparison to conventional MPRAGE accelerated by using generalized autocalibrating partially parallel acquisition (GRAPPA) 2 × 1. METHODS: A total of 26 healthy volunteers and 33 patients were included in this study. Subjects were scanned with two MPRAGEs, GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 acquired in 5 min 21 s and 1 min 42 s, respectively, on a 3T MR scanner. Healthy volunteers underwent additional two MPRAGEs (CAIPI 3 × 3 and GRAPPA 3 × 3). The image quality of the four MPRAGEs was visually evaluated with a 5-point scale in healthy volunteers, and the SNR of four MPRAGEs was also calculated by measuring the phantom 10 times with each MPRAGE. Based on the results of the visual evaluation, voxel-based morphometry (VBM) analyses, including subfield analysis, were performed only for GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. Correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was assessed. RESULTS: In visual evaluations, scores for MPRAGE GRAPPA 2 × 1 (mean rank: 4.00) were significantly better than those for Wave-CAIPI 3 × 3 (mean rank: 3.00), CAIPI 3 × 3 (mean rank: 1.83), and GRAPPA 3 × 3 (mean rank: 1.17), and scores for Wave-CAIPI 3×3 were significantly better than those for CAIPI 3 × 3 and GRAPPA 3 × 3. Image noise was evident at the center for additional MPRAGE CAIPI 3 × 3 and GRAPPA 3 × 3. The correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was higher than 0.85 in all VOIs except globus pallidus. Subfield analysis of hippocampus also showed a high correlation between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. CONCLUSION: MPRAGE Wave-CAIPI 3 × 3 shows relatively better contrast, despite of its short scan time of 1 min 42 s. The volumes derived from automated segmentation of MPRAGE Wave-CAIPI are considered to be reliable measures

    Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance

    Get PDF
    [Purpose]Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson’s disease (PD) by showing reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach with deep learning-based reconstruction (dDLR).[Materials and methods]We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwentNM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with dDLR (NEX1+dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by visual assessment for diferentiating PD from non-PD were also compared between NEX1 and NEX1+dDLR.[Results]Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1+dDLR were signifcantly higherthan in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating characteristic curve (AUC) using CR_SN and CR_LC of NEX1+dDLR were 0.87 and 0.75, respectively, which had no signifcant diference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying dDLR.[Conclusion]Image quality for NEX1+dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diagnosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected to provide clinical merits in diagnosing PD

    Magnetized Fast Isochoric Laser Heating for Efficient Creation of Ultra-High-Energy-Density States

    Full text link
    The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 ±\pm 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core (ρR\rho R \sim 0.1 g/cm2^2). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-KαK_\alpha imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2\% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core (ρR\rho R \sim 0.4 g/cm2^2) leads to much higher laser-to-core coupling (>> 15%), this is much higher than that achieved by the current scheme

    Effects of loading a magnetic field longitudinal to the linear particle-beam track on yields of reactive oxygen species in water

    Get PDF
    The effects of a magnetic field longitudinal to the ion beam track on the generation of hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) in water were investigated. A longitudinal magnetic field was reported to enhance the biological effects of the ion beam. However, the mechanism of the increased cell death by a longitudinal magnetic field has not been clarified. The local density of •OH generation was estimated by a method based on the EPR spin-trapping. A series of reaction mixtures containing varying concentrations (0.76‒2278 mM) of DMPO was irradiated by 16 Gy of carbon- or iron-ion beams at the Heavy-Ion Medical Accelerator in Chiba (HIMAC, NIRS/QST, Chiba, Japan) with or without a longitudinal magnetic field (0.0, 0.3, or 0.6 T). The DMPO-OH yield in the sample solutions was measured by X-band EPR and plotted versus DMPO density. O2-dependent and O2-independent H2O2 yields were measured. An aliquot of ultra-pure water was irradiated by carbon-ion beams with or without a longitudinal magnetic field. Irradiation experiments were performed under air or hypoxic conditions. H2O2 generation in irradiated water samples was quantified by an EPR spin-trapping, which measures •OH synthesized from H2O2 by UVB irradiation. Relatively sparse •OH generation caused by particle beams in water were not affected by loading a magnetic field on the beam track. O2-dependent H2O2 generation decreased and oxygen-independent H2O2 generation increased after loading a magnetic field parallel to the beam track. Loading a magnetic field to the beam track made •OH generation denser or made dense •OH more reactive

    Application of layered poly (L-lactic acid) cell free scaffold in a rabbit rotator cuff defect model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluated the application of a layered cell free poly (L-lactic acid) (PLLA) scaffold to regenerate an infraspinatus tendon defect in a rabbit model. We hypothesized that PLLA scaffold without cultivated cells would lead to regeneration of tissue with mechanical properties similar to reattached infraspinatus without tendon defects.</p> <p>Methods</p> <p>Layered PLLA fabric with a smooth surface on one side and a pile-finished surface on the other side was used. Novel form of layered PLLA scaffold was created by superimposing 2 PLLA fabrics. Defects of the infraspinatus tendon were created in 32 rabbits and the PLLA scaffolds were transplanted, four rabbits were used as normal control. Contralateral infraspinatus tendons were reattached to humeral head without scaffold implantation. Histological and mechanical evaluations were performed at 4, 8, and 16 weeks after operation.</p> <p>Results</p> <p>At 4 weeks postoperatively, cell migration was observed in the interstice of the PLLA fibers. Regenerated tissue was directly connected to the bone composed mainly of type III collagen, at 16 weeks postoperatively. The ultimate failure load increased in a time-dependent manner and no statistical difference was seen between normal infraspinatus tendon and scaffold group at 8 and 16 weeks postoperatively. There were no differences between scaffold group and reattach group at each time of point. The stiffness did not improve significantly in both groups.</p> <p>Conclusions</p> <p>A novel form of layered PLLA scaffold has the potential to induce cell migration into the scaffold and to bridge the tendon defect with mechanical properties similar to reattached infraspinatus tendon model.</p

    Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave

    Full text link
    We measured the grain size of metastable phase of Si synthesized by shock compression. We analyzed the crystalline structures of the femtosecond laser-driven shock compressed silicon with x-ray diffraction measurements. We found that submicron grains of metastable Si-VIII exist in the silicon. We suggest that the pressure loading time is too short for the nucleated high-pressure phases to grow in case of the femtosecond laser-driven shock compression, therefore Si-VIII grains of submicron size are obtained. We are expecting to discover other unique crystalline structures induced by the femtosecond laser-driven shock wave. © 2011 American Institute of Physics.Tsujino M., Sano T., Sakata O., et al, Journal of Applied Physics, 110, 12, 126103 (2011) https://doi.org/10.1063/1.3673591
    corecore