2 research outputs found

    Clinical Investigations Outcomes of salvage high-dose-rate brachytherapy with or without external beam radiotherapy for isolated vaginal recurrence of endometrial cancer

    No full text
    Abstract Purpose: This study was designed to retrospectively analyze outcomes of high-dose-rate (HDR) brachytherapy, with or without external beam radiotherapy (EBRT), in patients with vaginal recurrence of endometrial carcinoma, and to identify factors prognostic of patient outcomes. Material and methods: The medical records of all patients who underwent HDR brachytherapy for initial recurrence in the vagina of endometrial cancer after definitive surgery between 1992 and 2014 were retrospectively reviewed. All patients underwent either intracavitary brachytherapy (ICBT) or interstitial brachytherapy (ISBT) with or without EBRT. Late toxicity was graded using the EORTC (LENT/SOMA) scale, revised in 1995. Results: Thirty-seven patients were identified. The median follow-up time was 48 months (range: 6-225 months). Of these 37 patients, 23 underwent ICBT, 14 underwent ISBT, and 26 underwent EBRT. Tumor size at first examination of initial relapse was significantly larger in the ISBT than in the ICBT group. The 4-year respective overall survival (OS), local control (LC), and progression-free survival (PFS) rates in the entire cohort were 81.0%, 77.9%, and 56.8%, respectively. The interval between diagnosis of first recurrence and radiotherapy (< 3 months, ≥ 3 months) was a significant predictor of LC and PFS. OS and LC rates did not differ significantly in the ICBT and ISBT groups. Two patients experienced grade 2 rectal bleeding, and four experienced grade 2 hematuria. No grade 3 or higher late complications were observed. Conclusions: Salvage HDR brachytherapy is an optimal for treating vaginal recurrence of endometrial carcinoma with acceptable morbidity. Early radiotherapy, including brachytherapy, should be considered for women who experience vaginal recurrence of endometrial cancer. J Contemp Brachytherapy 2017; 9, 3: 209-215 DOI: https://doi.org/10.5114/jcb.2017.67755 Key words: endometrial cancer, high-dose-rate brachytherapy, vaginal recurrence. Purpose Endometrial cancer is the second most frequent gynecologic malignancy in Japan Material and methods Patients The medical records of all patients treated with HDR brachytherapy for initial recurrence after definitive sur

    Amelioration of Radiation Enteropathy by Dietary Supplementation With Reduced Coenzyme Q10

    No full text
    Purpose: Effective methods to ameliorate radiation enteropathy have not been developed. To address this issue, we investigated the reduced form of coenzyme Q10 (rCoQ10) as a potential radioprotector in a mouse model. Methods and Materials: rCoQ10 was added to a standard laboratory mouse diet at a final concentration of 1.0% 9 days before irradiation and 30 days thereafter or dissolved in corn oil and administered transorally. Accumulated amounts of coenzyme Q10 (CoQ10) or coenzyme Q9 in the intestine were measured by high-performance liquid chromatography. Reactive oxygen species (ROS), apoptosis, and morphologic changes in the intestine were assessed by immunohistochemistry after administration of 13 Gy of x-ray to the mouse abdomen. Body weight and survival were monitored for 30 days after irradiation. Cytotoxicity using 3 human cancer cell lines and the tumor growth–inhibiting effect in a xenograft were investigated to determine whether rCoQ10 interferes with radiation-specific cytotoxic effects on tumor growth. Results: CoQ10 was greatly accumulated in all sections of the intestine after both massive transoral dosing and dietary administration, whereas coenzyme Q9 was not. Administration of rCoQ10 suppressed ROS production and inhibited apoptosis in the crypts, resulting in preservation of villi structures after irradiation. Notably, 92% of mice fed the rCoQ10-supplemented diet were healthy and alive 30 days after irradiation, whereas 50% of control mice died (P < .05). Moreover, rCoQ10 did not interfere with radiation-specific cytotoxic effects on tumors either in vitro or in vivo. Conclusions: Administration of rCoQ10 led to its accumulation in the intestine and induced radioprotective effects by inhibiting ROS-mediated apoptosis, thereby preserving intestinal structures. Our results indicated that rCoQ10 supplementation effectively ameliorated radiation enteropathy
    corecore