56 research outputs found
RacGAP α2-Chimaerin Function in Development Adjusts Cognitive Ability in Adulthood
SummaryA major concern in neuroscience is how cognitive ability in adulthood is affected and regulated by developmental mechanisms. The molecular bases of cognitive development are not well understood. We provide evidence for the involvement of the α2 isoform of Rac-specific guanosine triphosphatase (GTPase)-activating protein (RacGAP) α-chimaerin (chimerin) in this process. We generated and analyzed mice with global and conditional knockouts of α-chimaerin and its isoforms (α1-chimaerin and α2-chimaerin) and found that α-chimaerin plays a wide variety of roles in brain function and that the roles of α1-chimaerin and α2-chimaerin are distinct. Deletion of α2-chimaerin, but not α1-chimaerin, beginning during early development results in an increase in contextual fear learning in adult mice, whereas learning is not altered when α2-chimaerin is deleted only in adulthood. Our findings suggest that α2-chimaerin acts during development to establish normal cognitive ability in adulthood
Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites
Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process
Serum Antibody Against NY-ESO-1 and XAGE1 Antigens Potentially Predicts Clinical Responses to Anti–Programmed Cell Death-1 Therapy in NSCLC
Introduction: Programmed cell death-1 (PD-1) inhibitors effectively treat NSCLC and prolong survival. Robust biomarkers for predicting clinical benefits of good response and long survival with anti-PD-1 therapy have yet to be identified; therefore, predictive biomarkers are needed to select patients with benefits.
Methods: We conducted a prospective study to explore whether serum antibody against NY-ESO-1 and/or XAGE1 cancer-testis antigens predicted primarily good clinical response and secondarily long survival with anti-PD-1 therapy for NSCLC. The serum antibody was detected by enzyme-linked immunosorbent assay, and tumor immune microenvironment and mutation burden were analyzed by immunohistochemistry and next-generation sequencing.
Results: In the discovery cohort (n = 13), six antibody-positive NSCLC cases responded to anti-PD-1 therapy (two complete and four partial responses), whereas seven antibody-negative NSCLC cases did not. Antibody positivity was associated with good response and survival, regardless of tumor programmed death ligand 1 (PD-L1) expression, mutation burden, and CD8+ T-cell infiltration. In the validation cohort (n = 75), 17 antibody-positive NSCLC cases responded well to anti-PD-1 therapy as compared with 58 negative NSCLC cases (objective response rate 65% versus 19%, p = 0.0006) and showed significantly prolonged progression-free survival and overall survival. Antibody titers highly correlated with tumor reduction rates. In the multivariate analysis, response biomarkers were tumor programmed death ligand 1 expression and antibody positivity, and only antibody positivity was a significantly better predictive biomarker of progression-free survival (hazard ratio = 0.4, p = 0.01) and overall survival (hazard ratio = 0.2, p = 0.004).
Conclusions: Our results suggest that NY-ESO-1 and/or XAGE1 serum antibodies are useful biomarkers for predicting clinical benefits in anti-PD-1 therapy for NSCLC and probably for other cancers
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
Efficient searching for grain storage container by combine robot
Partly presented at the 6th International Symposium on Machinery and Mechatronics for Agricultural and Biosystems Engineering ISMAB 2012.In this study, a combine robot was equipped with an autonomous grain container searching function. In order to realize automated grain unloading, the combine robot has to search and identify the grain storage container in an outdoor environment. A planar board was attached to the container. The marker was searched for using a camera mounted on the unloading auger of the combine. An efficient marker searching procedure was proposed on the basis of a numerical analysis of the camera's field of view and was verified experimentally. The results showed that the combine robot efficiently searched for and detected the marker and positioned its spout at the target point over the container to unload the grain
Using multiple sensors to detect uncut crop edges for autonomous guidance systems of head-feeding combine harvesters
This study proposes a method for detection of uncut crop edges using multiple sensors to provide accurate data for the autonomous guidance systems of head-feeding combine harvesters widely used in the paddy fields of Japan for harvesting rice. The proposed method utilizes navigation sensors, such as a real-time kinematic global positioning system (RTK-GPS), GPS compass, and laser range finder (LRF), to generate a three-dimensional map of the terrain to be harvested at a processing speed of 35 ms and obtain the crop height. Furthermore, it can simultaneously detect the uncut crop edges by RANdom SAmple Consensus (RANSAC). The average of the lateral offset value and crop height of the uncut crop edge detected by the proposed method were 0.154 m and 0.537 m, respectively
Vision-based uncut crop edge detection for automated guidance of head-feeding combine
This study proposes a vision-based uncut crop edge detection method to be utilized as a part of an automated guidance system for a head-feeding combine harvester, which is widely used in Japan for the harvesting of rice and wheat. The proposed method removes the perspective effects of the acquired images by inverse perspective mapping and recovers the crop rows to their actual parallel states. Then, the uncut crop edges are detected by applying color transformation and the edge detection method. The proposed method has shown outstanding detection performance on the images acquired under various conditions of the paddy field with an average accuracy of 97% and a processing speed of 33 ms per frame
Conditions to Maintain Healthy Eco-Food System: the Case of Laguna Lake Watershed, Philippines
There is a growing concern that long-standing, expanding environmental changes in resource degradation accompanied by rapid economic growth are affecting the health and livelihoods of people in many parts of Asian countries. These vulnerable communities live in degraded ecosystems that are harmful to their health. With few resources to face these problems, they face environmental pollution, and new and old infectious diseases. The present paper is an outcome of an ongoing empirical research, composed of medical, environmental and social scientists, to clarify the link between environment degradation, leading to a disruption of ecosystem services, and people’s health and livelihoods. More specifically, it is our aim to identify and analyze the past and current land use changes, water and sediment related risks to the health of communities in the Laguna Lake region in the Philippines and the linkage with their livelihoods. It is expected to clarify more practical, appropriate policy recommendations to improve current land use and development planning as well as public health systems. For data collection, household surveys, focused group discussions, key informant interviews are conducted in addition to secondary data reviews. Laboratory analyses are conducted with soil, water, biomaterial and fish samples to identify ecological risks at upper, middle and lower watersheds. Data analysis is conducted by using statistical and geographical information system tools. The challenge of the ecosystem approach to Eco-Food system is how to meet human needs without modifying or jeopardizing the ecosystem in the long term, and ideally, even improving it
- …