37 research outputs found

    Personalized Federated Learning with Multi-branch Architecture

    Full text link
    Federated learning (FL) is a decentralized machine learning technique that enables multiple clients to collaboratively train models without requiring clients to reveal their raw data to each other. Although traditional FL trains a single global model with average performance among clients, statistical data heterogeneity across clients has resulted in the development of personalized FL (PFL), which trains personalized models with good performance on each client's data. A key challenge with PFL is how to facilitate clients with similar data to collaborate more in a situation where each client has data from complex distribution and cannot determine one another's distribution. In this paper, we propose a new PFL method (pFedMB) using multi-branch architecture, which achieves personalization by splitting each layer of a neural network into multiple branches and assigning client-specific weights to each branch. We also design an aggregation method to improve the communication efficiency and the model performance, with which each branch is globally updated with weighted averaging by client-specific weights assigned to the branch. pFedMB is simple but effective in facilitating each client to share knowledge with similar clients by adjusting the weights assigned to each branch. We experimentally show that pFedMB performs better than the state-of-the-art PFL methods using the CIFAR10 and CIFAR100 datasets.Comment: Accepted by IJCNN 202

    Heterogeneous Domain Adaptation with Positive and Unlabeled Data

    Full text link
    Heterogeneous unsupervised domain adaptation (HUDA) is the most challenging domain adaptation setting where the feature spaces of source and target domains are heterogeneous, and the target domain has only unlabeled data. Existing HUDA methods assume that both positive and negative examples are available in the source domain, which may not be satisfied in some real applications. This paper addresses a new challenging setting called positive and unlabeled heterogeneous unsupervised domain adaptation (PU-HUDA), a HUDA setting where the source domain only has positives. PU-HUDA can also be viewed as an extension of PU learning where the positive and unlabeled examples are sampled from different domains. A naive combination of existing HUDA and PU learning methods is ineffective in PU-HUDA due to the gap in label distribution between the source and target domains. To overcome this issue, we propose a novel method, predictive adversarial domain adaptation (PADA), which can predict likely positive examples from the unlabeled target data and simultaneously align the feature spaces to reduce the distribution divergence between the whole source data and the likely positive target data. PADA achieves this by a unified adversarial training framework for learning a classifier to predict positive examples and a feature transformer to transform the target feature space to that of the source. Specifically, they are both trained to fool a common discriminator that determines whether the likely positive examples are from the target or source domain. We experimentally show that PADA outperforms several baseline methods, such as the naive combination of HUDA and PU learning.Comment: Accepted by IEEE Big Data 2023 as a regular pape

    On a simplified membrane pressure gauge

    Get PDF

    The compressibility measurements on liquids

    Get PDF

    Single crystallization of Ba 8

    No full text
    corecore