2,314 research outputs found

    Mismatch Phenomena from an LFG Perspective

    Get PDF

    Relation between dispersion lines and conductance of telescoped armchair double-wall nanotubes analyzed using perturbation formulas and first-principles calculations

    Full text link
    The Landauer's formula conductance of the telescoped armchair nanotubes is calculated with the Hamiltonian defined by first-principles calculations (SIESTA code). Herein, partially extracting the inner tube from the outer tube is called 'telescoping'. It shows a rapid oscillation superposed on a slow oscillation as a function of discrete overlap length (L−1/2)a(L-1/2)a with an integer variable LL and the lattice constant aa. Considering the interlayer Hamiltonian as a perturbation, we obtain the approximate formula of the amplitude of the slow oscillation as ∣A∣2/(∣A∣2+ε2)|A|^2/(|A|^2+\varepsilon^2) where AA is the effective interlayer interaction and ε\varepsilon is the band split without interlayer interaction. The approximate formula is related to the Thouless number of the dispersion lines.Comment: 9 figure

    Exciton Mott transition in Si Revealed by Terahertz Spectroscopy

    Full text link
    Exciton Mott transition in Si is investigated by using terahertz time-domain spectroscopy. The excitonic correlation as manifested by the 1s-2p resonance is observed above the Mott density. The scattering rate of charge carriers is prominently enhanced at the proximity of Mott density, which is attributed to the non-vanishing exciton correlation in the metallic electron-hole plasma. Concomitantly, the signature of plasmon-exciton coupling is observed in the loss function spectra.Comment: 5 pages, 3 figure
    • …
    corecore