359 research outputs found

    Effect of liposomally trapped antitumour drugs on a drug-resistant mouse lymphoma in vivo

    Get PDF
    A TLX-5 mouse lymphoma which was resistant to 1-β-D-arabinofuranosyl cytosine (AraC) was used in vivo to study the possibility of using liposomes as drug-delivery vehicles in order to overcome drug resistance

    Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate

    Get PDF
    Sindbis virus virions incorporating uncleaved precursor envelope protein PE2 bind efficiently to cell-surface heparan sulfate (HS) because the furin cleavage site (a consensus HS-binding domain) is retained in the mature virus particle. However, they are essentially nonviable. Resuscitating mutations selected in the E3 or E2 protein preserve the PE2 noncleaving phenotype and HS binding, but facilitate fusion, and thereby restore wild-type infectivity on cultured cells. Here, we have demonstrated that the resuscitated PE2 noncleaving virus was almost avirulent in vivo, but mutated during the infection. Mutants had increased virulence and cleavage of PE2, with reduced HS binding capacity. We hypothesize that HS binding leads to sequestration of PE2 noncleaving virus particles and suppression of serum viremia, thereby selecting for evolution of the virus into a PE2-cleaving, low HS-binding phenotype

    Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate

    Get PDF
    Sindbis virus virions incorporating uncleaved precursor envelope protein PE2 bind efficiently to cell-surface heparan sulfate (HS) because the furin cleavage site (a consensus HS-binding domain) is retained in the mature virus particle. However, they are essentially nonviable. Resuscitating mutations selected in the E3 or E2 protein preserve the PE2 noncleaving phenotype and HS binding, but facilitate fusion, and thereby restore wild-type infectivity on cultured cells. Here, we have demonstrated that the resuscitated PE2 noncleaving virus was almost avirulent in vivo, but mutated during the infection. Mutants had increased virulence and cleavage of PE2, with reduced HS binding capacity. We hypothesize that HS binding leads to sequestration of PE2 noncleaving virus particles and suppression of serum viremia, thereby selecting for evolution of the virus into a PE2-cleaving, low HS-binding phenotype

    Liposomally trapped AraCTP to overcome AraC resistance in a murine lymphoma in vitro.

    Get PDF
    Two cell lines, one sensitive and one resistant to the cytotoxic effects of cytosine arabinoside (AraC) were studied in vitro as a drug-resistance model. The sensitivity of these cell lines, to the effects of free and liposomally trapped AraC and AraCTP as well as empty liposomes alone and mixed with free drug, was studied. This was done by following the inhibition of [3H]-dT incorporation into cellular DNA during exposure to the various drugs and liposomes. Some of the liposomal-lipid compositions inhibited [3H]-dT incorporation at very low concentrations, which made them unsuitable for further study. Liposomes composed of a 7:2:1 molar ratio of phosphatidylcholine:cholesterol:phosphatidic acid were selected as a suitable non-inhibitory carrier. Sensitivity of the two cell lines to free AraC differed by 3 logs, when compared in the [3H]-dT-incorporation assay. The resistant cell line was studied further, and was found to be up to 2 logs more sensitive to AraCTP when given in liposomes than to either the free drug alone or mixed with empty liposomes. It appears from these studies that liposomes are able to help overcome drug resistance in this cell line in vitro

    Adaptation of Sindbis Virus to BHK Cells Selects for Use of Heparan Sulfate as an Attachment Receptor

    Get PDF
    Attachment of Sindbis virus to the cell surface glycosaminoglycan heparan sulfate (HS) and the selection of this phenotype by cell culture adaptation were investigated. Virus (TR339) was derived from a cDNA clone representing the consensus sequence of strain AR339 (K. L. McKnight, D. A. Simpson, S. C. Lin, T. A. Knott, J. M. Polo, D. F. Pence, D. B. Johannsen, H. W. Heidner, N. L. Davis, and R. E. Johnston, J. Virol. 70:1981–1989, 1996) and from mutant clones containing either one or two dominant cell culture adaptations in the E2 structural glycoprotein (Arg instead of Ser at E2 position 1 [designated TRSB]) or this mutation plus Arg for Ser at E2 114 [designated TRSB-R114]). The consensus virus, TR339, bound to baby hamster kidney (BHK) cells very poorly. The mutation in TRSB increased binding 10- to 50-fold, and the additional mutation in TRSB-R114 increased binding 3- to 5-fold over TRSB. The magnitude of binding was positively correlated with the degree of cell culture adaptation and with attenuation of these viruses in neonatal mice. HS was identified as the attachment receptor for the mutant viruses by the following experimental results. (i) Low concentrations of soluble heparin inhibited plaque formation on and binding of mutant viruses to BHK cells by >95%. In contrast, TR339 showed minimal inhibition at high concentrations. (ii) Binding and infectivity of TRSB-R114 was sensitive to digestion of cell surface HS with heparinase III, and TRSB was sensitive to both heparinase I and heparinase III. TR339 infectivity was only slightly affected by either digestion. (iii) Radiolabeled TRSB and TRSB-R114 attached efficiently to heparin-agarose beads in binding assays, while TR339 showed virtually no binding. (iv) Binding and infectivity of TRSB and TRSB-R114, but not TR339, were greatly reduced on Chinese hamster ovary cells deficient in HS specifically or all glycosaminoglycans. (v) High-multiplicity-of-infection passage of TR339 on BHK cell cultures resulted in rapid coselection of high-affinity binding to BHK cells and attachment to heparin-agarose beads. Sequencing of the passaged virus population revealed a mutation from Glu to Lys at E2 70, a mutation common to many laboratory strains of Sindbis virus. These results suggest that TR339, the most virulent virus tested, attaches to cells through a low-affinity, primarily HS-independent mechanism. Adaptive mutations, selected during cell culture growth of Sindbis virus, enhance binding and infectivity by allowing the virus to attach by an alternative mechanism that is dependent on the presence of cell surface HS

    Bi-cultural dynamics for risk and protective factors for cardiometabolic health in an Alaska Native (Yup\u27ik) population

    Get PDF
    Alaska Native people experience disparities in mortality from heart disease and stroke. This work attempts to better understand the relationships between socioeconomic, behavioral, and cardiometabolic risk factors among Yup\u27ik people of southwestern Alaska, with a focus on the role of the socioeconomic, and cultural components. Using a cross-sectional sample of 486 Yup\u27ik adults, we fitted a Partial Least Squares Path Model (PLS-PM) to assess the associations between components, including demographic factors [age and gender], socioeconomic factors [education, economic status, Yup\u27ik culture, and Western culture], behavioral factors [diet, cigarette smoking and smokeless tobacco use, and physical activity], and cardiometabolic risk factors [adiposity, triglyceride-HDL and LDL lipids, glycemia, and blood pressure]. We found relatively mild associations of education and economic status with cardiometabolic risk factors, in contrast with studies in other populations. The socioeconomic factor and participation in Yup\u27ik culture had potentially protective associations with adiposity, triglyceride-HDL lipids, and blood pressure, whereas participation in Western culture had a protective association with blood pressure. We also found a moderating effect of participation in Western culture on the relationships between Yup\u27ik culture participation and both blood pressure and LDL lipids, indicating a potentially beneficial additional effect of biculturalism. Our results suggest that reinforcing protective effects of both Yup\u27ik and Western cultures could be useful for interventions aimed at reducing cardiometabolic health disparities

    Mitigation of Quantum Dot Cytotoxicity by Microencapsulation

    Get PDF
    When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the “first line of defense” for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor

    Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chikungunya fever is an emerging arboviral disease characterized by an algo-eruptive syndrome, inflammatory polyarthralgias, or tenosynovitis that can last for months to years. Up to now, the pathophysiology of the chronic stage is poorly understood.</p> <p>Case presentation</p> <p>We report the first case of CHIKV infection with chronic associated rheumatism in a patient who developed progressive erosive arthritis with expression of inflammatory mediators and persistence of specific IgM antibodies over 24 months following infection.</p> <p>Conclusions</p> <p>Understanding the specific features of chikungunya virus as well as how the virus interacts with its host are essential for the prevention, treatment or cure of chikungunya disease.</p

    Working with Commercially Available Quantum Dots for Immunofluorescence on Tissue Sections

    Get PDF
    Quantum dots are semiconductor fluorescent nanocrystals that exhibit excellent characteristics compared with more commonly used organic fluorescent dyes. For many years quantum dot conjugated products have been available in multiple forms for fluorescence imaging of tissue sections under the trademark name Qdot®. They have much increased brightness, narrow emission spectrum, large Stokes shift and photostability compared with conventional organic fluorescent dyes, which together make them the fluorophores of choice for demanding requirements. Vivid Qdots are recent replacements for original Qdots, modified to improve brightness, however this has affected the fluorescence stability in commonly used conditions for immunohistochemistry. We present here our investigation of the stability of original and Vivid Qdots in solution and in immunohistochemistry, highlight the potential pitfalls and propose a protocol for stable and reliable multiplex staining with current commercially available original and Vivid Qdots
    corecore