54 research outputs found

    Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate

    Get PDF
    Sindbis virus virions incorporating uncleaved precursor envelope protein PE2 bind efficiently to cell-surface heparan sulfate (HS) because the furin cleavage site (a consensus HS-binding domain) is retained in the mature virus particle. However, they are essentially nonviable. Resuscitating mutations selected in the E3 or E2 protein preserve the PE2 noncleaving phenotype and HS binding, but facilitate fusion, and thereby restore wild-type infectivity on cultured cells. Here, we have demonstrated that the resuscitated PE2 noncleaving virus was almost avirulent in vivo, but mutated during the infection. Mutants had increased virulence and cleavage of PE2, with reduced HS binding capacity. We hypothesize that HS binding leads to sequestration of PE2 noncleaving virus particles and suppression of serum viremia, thereby selecting for evolution of the virus into a PE2-cleaving, low HS-binding phenotype

    Attenuation of Sindbis virus variants incorporating uncleaved PE2 glycoprotein is correlated with attachment to cell-surface heparan sulfate

    Get PDF
    Sindbis virus virions incorporating uncleaved precursor envelope protein PE2 bind efficiently to cell-surface heparan sulfate (HS) because the furin cleavage site (a consensus HS-binding domain) is retained in the mature virus particle. However, they are essentially nonviable. Resuscitating mutations selected in the E3 or E2 protein preserve the PE2 noncleaving phenotype and HS binding, but facilitate fusion, and thereby restore wild-type infectivity on cultured cells. Here, we have demonstrated that the resuscitated PE2 noncleaving virus was almost avirulent in vivo, but mutated during the infection. Mutants had increased virulence and cleavage of PE2, with reduced HS binding capacity. We hypothesize that HS binding leads to sequestration of PE2 noncleaving virus particles and suppression of serum viremia, thereby selecting for evolution of the virus into a PE2-cleaving, low HS-binding phenotype

    The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins

    Get PDF
    The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20βˆ’/βˆ’ mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5β€² exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20βˆ’/βˆ’ mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20βˆ’/βˆ’ mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle

    Adaptation of Sindbis Virus to BHK Cells Selects for Use of Heparan Sulfate as an Attachment Receptor

    Get PDF
    Attachment of Sindbis virus to the cell surface glycosaminoglycan heparan sulfate (HS) and the selection of this phenotype by cell culture adaptation were investigated. Virus (TR339) was derived from a cDNA clone representing the consensus sequence of strain AR339 (K. L. McKnight, D. A. Simpson, S. C. Lin, T. A. Knott, J. M. Polo, D. F. Pence, D. B. Johannsen, H. W. Heidner, N. L. Davis, and R. E. Johnston, J. Virol. 70:1981–1989, 1996) and from mutant clones containing either one or two dominant cell culture adaptations in the E2 structural glycoprotein (Arg instead of Ser at E2 position 1 [designated TRSB]) or this mutation plus Arg for Ser at E2 114 [designated TRSB-R114]). The consensus virus, TR339, bound to baby hamster kidney (BHK) cells very poorly. The mutation in TRSB increased binding 10- to 50-fold, and the additional mutation in TRSB-R114 increased binding 3- to 5-fold over TRSB. The magnitude of binding was positively correlated with the degree of cell culture adaptation and with attenuation of these viruses in neonatal mice. HS was identified as the attachment receptor for the mutant viruses by the following experimental results. (i) Low concentrations of soluble heparin inhibited plaque formation on and binding of mutant viruses to BHK cells by >95%. In contrast, TR339 showed minimal inhibition at high concentrations. (ii) Binding and infectivity of TRSB-R114 was sensitive to digestion of cell surface HS with heparinase III, and TRSB was sensitive to both heparinase I and heparinase III. TR339 infectivity was only slightly affected by either digestion. (iii) Radiolabeled TRSB and TRSB-R114 attached efficiently to heparin-agarose beads in binding assays, while TR339 showed virtually no binding. (iv) Binding and infectivity of TRSB and TRSB-R114, but not TR339, were greatly reduced on Chinese hamster ovary cells deficient in HS specifically or all glycosaminoglycans. (v) High-multiplicity-of-infection passage of TR339 on BHK cell cultures resulted in rapid coselection of high-affinity binding to BHK cells and attachment to heparin-agarose beads. Sequencing of the passaged virus population revealed a mutation from Glu to Lys at E2 70, a mutation common to many laboratory strains of Sindbis virus. These results suggest that TR339, the most virulent virus tested, attaches to cells through a low-affinity, primarily HS-independent mechanism. Adaptive mutations, selected during cell culture growth of Sindbis virus, enhance binding and infectivity by allowing the virus to attach by an alternative mechanism that is dependent on the presence of cell surface HS

    Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate

    Get PDF
    AbstractIn humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthralgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent

    A Mouse Model for Studying Viscerotropic Disease Caused by Yellow Fever Virus Infection

    Get PDF
    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-Ξ±/Ξ²) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-Ξ±/Ξ² receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6–7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT129-derived, macrophages and dendritic cells in vitro, suggesting a role for these cells in YFV pathogenesis. We conclude that the ability of wild-type YFV to evade and/or disable components of the IFN-Ξ±/Ξ² response may be primate-specific such that infection of mice with a functional IFN-Ξ±/Ξ² antiviral response is attenuated. Consequently, subcutaneous YFV infection of A129 mice represents a biologically relevant model for studying viscerotropic infection and disease development following wild-type virus inoculation, as well as mechanisms of 17D-204 vaccine attenuation, without a requirement for adaptation of the virus

    Sindbis Virus Vectors Designed To Express a Foreign Protein as a Cleavable Component of the Viral Structural Polyprotein

    No full text
    Alphavirus-based expression vectors commonly use a duplicated 26S promoter to drive expression of a foreign gene. Here we describe an expression strategy in which the foreign sequences are linked to the gene encoding the 2A protease of foot-and-mouth disease virus and then inserted in frame between the capsid and E3 genes of Sindbis virus. During replication, the 2A fusion protein is synthesized as a component of the viral structural polyprotein that is then released by intramolecular cleavages mediated by the capsid and 2A proteases. Recombinant Sindbis viruses that expressed fusion proteins composed of 2A linked to the green fluorescent protein (GFP) and to the VP7 protein of bluetongue virus were constructed. Viruses engineered to express GFP and VP7 from a duplicate 26S promoter were also constructed. All four viruses expressed the transgene and grew to similar titers in cultured cells. However, the GFP/2A- and VP7/2A-expressing viruses displayed greater expression stability and were less attenuated in newborn mice than the cognate double-subgenomic promoter-based viruses. By combining the two expression strategies, we constructed bivalent viruses that incorporated and expressed both transgenes. The bivalent viruses grew to lower titers in cultured cells and were essentially avirulent in newborn mice. Groups of mice were vaccinated with each VP7- and VP7/2A-expressing virus, and antibody responses to native VP7 were measured in an indirect enzyme-linked immunosorbent assay. Despite their genetic and phenotypic differences, all viruses induced similarly high titers of VP7-specific antibodies. These results demonstrate that 2A fusion protein-expressing alphaviruses may be particularly well suited for applications that require enduring expression of a single protein or coexpression of two alternative proteins

    Identification and Characterization of Interferon-Induced Proteins That Inhibit Alphavirus Replicationβ–Ώ

    No full text
    Alpha/beta interferon (IFN-Ξ±/Ξ²) produces antiviral effects through upregulation of many interferon-stimulated genes (ISGs) whose protein products are effectors of the antiviral state. Previous data from our laboratory have shown that IFN-Ξ±/Ξ² can limit Sindbis virus (SB) replication through protein kinase R (PKR)-dependent and PKR-independent mechanisms and that one PKR-independent mechanism inhibits translation of the infecting virus genome (K. D. Ryman et al., J. Virol. 79:1487-1499, 2005). Further, using Affymetrix microarray technology, we identified 44 genes as candidates for PKR/RNase L-independent IFN-induced antiviral activities. In the current studies, we have begun analyzing these gene products for antialphavirus activity using three techniques: (i) overexpression of the protein from SB vectors and assessment of virulence attenuation in mice; (ii) overexpression of the proteins in a stable tetracycline-inducible murine fibroblast culture system and assessment of effects upon SB replication; and (iii) small interfering RNA-mediated knockdown of gene mRNA in fibroblast cultures followed by SB replication assessment as above. Tested proteins included those we hypothesized had potential to affect virus genome translation and included murine ISG20, ISG15, the zinc finger antiviral protein (ZAP), viperin, p56, p54, and p49. Interestingly, the pattern of antiviral activity for some gene products was different between in vitro and in vivo assays. Viperin and ZAP attenuated virulence most profoundly in mice. However, ISG20 and ZAP potently inhibited SB replication in vitro, whereas and viperin, p56, and ISG15 exhibited modest replication inhibition in vitro. In contrast, p54 and p49 had little to no effect in any assay

    The 17D-204 Vaccine Strain-Induced Protection against Virulent Yellow Fever Virus Is Mediated by Humoral Immunity and CD4+ but not CD8+ T Cells.

    No full text
    A gold standard of antiviral vaccination has been the safe and effective live-attenuated 17D-based yellow fever virus (YFV) vaccines. Among more than 500 million vaccinees, only a handful of cases have been reported in which vaccinees developed a virulent wild type YFV infection. This efficacy is presumed to be the result of both neutralizing antibodies and a robust T cell response. However, the particular immune components required for protection against YFV have never been evaluated. An understanding of the immune mechanisms that underlie 17D-based vaccine efficacy is critical to the development of next-generation vaccines against flaviviruses and other pathogens. Here we have addressed this question for the first time using a murine model of disease. Similar to humans, vaccination elicited long-term protection against challenge, characterized by high neutralizing antibody titers and a robust T cell response that formed long-lived memory. Both CD4+ and CD8+ T cells were polyfunctional and cytolytic. Adoptive transfer of immune sera or CD4+ T cells provided partial protection against YFV, but complete protection was achieved by transfer of both immune sera and CD4+ T cells. Thus, robust CD4+ T cell activity may be a critical contributor to protective immunity elicited by highly effective live attenuated vaccines
    • …
    corecore