1,388 research outputs found
Towards Efficient Full Pose Omnidirectionality with Overactuated MAVs
Omnidirectional MAVs are a growing field, with demonstrated advantages for
aerial interaction and uninhibited observation. While systems with complete
pose omnidirectionality and high hover efficiency have been developed
independently, a robust system that combines the two has not been demonstrated
to date. This paper presents VoliroX: a novel omnidirectional vehicle that can
exert a wrench in any orientation while maintaining efficient flight
configurations. The system design is presented, and a 6 DOF geometric control
that is robust to singularities. Flight experiments further demonstrate and
verify its capabilities.Comment: 10 pages, 6 figures, ISER 2018 conference submissio
Why Wouldn’t You Tell? Telling donor-conceived children about their conception
Research studies show that while an increasing
number of parents of children conceived as a result
of donor conception procedures appear to be telling
- or planning to tell - their child about their conception
(see Golombok et al., 2004; Brewaeys et al.,
2005 for an overview), a large proportion of parents
choose not to do so. Since the overwhelming majority
of parents normally support truth-telling within
their families, the decision to conceal the nature of
the child’s conception - and deception to maintain
its concealment - requires explanation
4D STEM: high efficiency phase contrast imaging using a fast pixelated detector
Phase contrast imaging is widely used for imaging beam sensitive and weak phase objects in electron microscopy. In this work we demonstrate the achievement of high efficient phase contrast imaging in STEM using the pnCCD, a fast direct electron pixelated detector, which records the diffraction patterns at every probe position with a speed of 1000 to 4000 frames per second, forming a 4D STEM dataset simultaneously with the incoherent Z-contrast imaging. Ptychographic phase reconstruction has been applied and the obtained complex transmission function reveals the phase of the specimen. The results using GaN and Ti, Nd- doped BiFeO3 show that this imaging mode is especially powerful for imaging light elements in the presence of much heavier elements
Luttinger-Liquid Behavior in the Alternating Spin-Chain System Copper Nitrate
We determine the phase diagram of copper nitrate Cu(NO)2.5DO
in the context of quantum phase transitions and novel states of matter. We
establish this compound as an ideal candidate to study quasi-1D Luttinger
liquids, 3D Bose-Einstein-Condensation of triplons, and the crossover between
1D and 3D physics. Magnetocaloric effect, magnetization, and neutron scattering
data provide clear evidence for transitions into a Luttinger liquid regime and
a 3D long-range ordered phase as function of field and temperature. Theoretical
simulations of this model material allow us to fully establish the phase
diagram and to discuss it in the context of dimerized spin systems.Comment: 5 pages, 4 figure
Dealloying of Platinum-Aluminum Thin Films Part I. Dynamics of Pattern Formation
Applying focused ion beam (FIB) nanotomography and Rutherford backscattering
spectroscopy (RBS) to dealloyed platinum-aluminum thin films an in-depth
analysis of the dominating physical mechanisms of porosity formation during the
dealloying process is performed. The dynamical porosity formation due to the
dissolution of the less noble aluminum in the alloy is treated as result of a
reaction-diffusion system. The RBS analysis yields that the porosity formation
is mainly caused by a linearly propagating diffusion front, i.e. the
liquid/solid interface, with a uniform speed of 42(3) nm/s when using a 4M
aqueous NaOH solution at room temperature. The experimentally observed front
evolution is captured by the normal diffusive
Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) equation and can be interpreted
as a branching random walk phenomenon. The etching front produces a gradual
porosity with an enhanced porosity in the surface-near regions of the thin film
due to prolonged exposure of the alloy to the alkaline solution.Comment: 4 pages, 5 figure
Physical realization of a quantum spin liquid based on a novel frustration mechanism
Unlike conventional magnets where the magnetic moments are partially or
completely static in the ground state, in a quantum spin liquid they remain in
collective motion down to the lowest temperatures. The importance of this state
is that it is coherent and highly entangled without breaking local symmetries.
Such phenomena is usually sought in simple lattices where antiferromagnetic
interactions and/or anisotropies that favor specific alignments of the magnetic
moments are "frustrated" by lattice geometries incompatible with such order
e.g. triangular structures. Despite an extensive search among such compounds,
experimental realizations remain very few. Here we describe the investigation
of a novel, unexplored magnetic system consisting of strong ferromagnetic and
weaker antiferromagnetic isotropic interactions as realized by the compound
CaCrO. Despite its exotic structure we show both
experimentally and theoretically that it displays all the features expected of
a quantum spin liquid including coherent spin dynamics in the ground state and
the complete absence of static magnetism.Comment: Modified version accepted in Nature Physic
Micro-solid oxide fuel cells: status, challenges, and chances
Abstract: Micro-solid oxide fuel cells (micro-SOFC) are predicted to be of high energy density and are potential power sources for portable electronic devices. A micro-SOFC system consists of a fuel cell comprising a positive electrode-electrolyte-negative electrode (i.e. PEN) element, a gas-processing unit, and a thermal system where processing is based on micro-electro-mechanical-systems fabrication techniques. A possible system approach is presented. The critical properties of the thin film materials used in the PEN membrane are discussed, and the unsolved subtasks related to micro-SOFC membrane development are pointed out. Such a micro-SOFC system approach seems feasible and offers a promising alternative to state-of-the-art batteries in portable electronics. Graphical abstract: Graphical Abstract tex
Dealloying of Platinum-Aluminum Thin Films Part II. Electrode Performance
Highly porous Pt/Al thin film electrodes on yttria stabilized zirconia
electrolytes were prepared by dealloying of co-sputtered Pt/Al films. The
oxygen reduction capability of the resulting electrodes was analyzed in a solid
oxide fuel cell setup at elevated temperatures. During initial heating to 523 K
exceptionally high performances compared to conventional Pt thin film
electrodes were measured. This results from the high internal surface area and
large three phase boundary length obtained by the dealloying process. Exposure
to elevated temperatures of 673 K or 873 K gave rise to degradation of the
electrode performance, which was primarily attributed to the oxidation of
remaining Al in the thin films.Comment: 5 pages, 4 figure
- …
