16 research outputs found
On stability of the Hamiltonian index under contractions and closures
The hamiltonian index of a graph is the smallest integer such that the -th iterated line graph of is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an -contractible subgraph of a graph nor the closure operation performed on (if is claw-free) affects the value of the hamiltonian index of a graph
How many conjectures can you stand: a survey
We survey results and open problems in hamiltonian graph theory centered around two conjectures of the 1980s that are still open: every 4-connected claw-free graph (line graph) is hamiltonian. These conjectures have lead to a wealth of interesting concepts, techniques, results and equivalent conjectures
On the parameterized complexity of edge-linked paths
by Neeldhara Misra, Fahad Panolan and Saket Saurab