117 research outputs found

    Thunder and lightning - What determines where and when thunderstorms occur?

    Get PDF
    Where and when thunderstorms occur is a topic of considerable practical importance for human society on which some meteorologists and atmospheric and space scientists carry out research. Owens et al (2104 Environ. Res. Lett. http://dx.doi.org/10.1088/1748-9326/9/11/115009 9 http://dx.doi.org/10.1088/1748-9326/9/11/115009 ) have found that the occurrence of lightning over the UK is up to ∼50% greater than usual when the magnetic field outside the Earth’s magnetosphere, in interplanetary space, points towards the Sun rather than away from it. But why this happens is not yet totally clear

    Extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage

    Get PDF
    A fair weather electric field has been observed near the Earth’s surface for over two centuries. The field is sustained by charge generation in distant disturbed weather regions, through current flow in the Global Electric Circuit. Conventionally, the fair weather part of the global circuit has disregarded clouds, but extensive layer clouds, important to climate, are widespread globally. Such clouds are not electrically inert, becoming charged at their upper and lower horizontal boundaries from vertical current flow, in a new electrical regime—neither fair nor disturbed weather; hence it is described here as semi-fair weather. Calculations and measurements show the upper cloud boundary charge is usually positive, the cloud interior positive and the lower cloud boundary negative, with the upper charge density larger, but of the same magnitude (~ nC m−2) as cloud base. Globally, the total positive charge stored by layer clouds is ~ 105 C, which, combined with the positive charge in the atmospheric column above the cloud up to the ionosphere, balances the total negative surface charge of the fair weather regions. Extensive layer clouds are therefore an intrinsic aspect of the global circuit, and the resulting natural charging of their cloud droplets is a fundamental atmospheric feature

    Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids

    Full text link
    We introduce a generalized machine learning framework to probabilistically parameterize upper-scale models in the form of nonlinear PDEs consistent with a continuum theory, based on coarse-grained atomistic simulation data of mechanical deformation and flow processes. The proposed framework utilizes a hypothesized coarse-graining methodology with manifold learning and surrogate-based optimization techniques. Coarse-grained high-dimensional data describing quantities of interest of the multiscale models are projected onto a nonlinear manifold whose geometric and topological structure is exploited for measuring behavioral discrepancies in the form of manifold distances. A surrogate model is constructed using Gaussian process regression to identify a mapping between stochastic parameters and distances. Derivative-free optimization is employed to adaptively identify a unique set of parameters of the upper-scale model capable of rapidly reproducing the system's behavior while maintaining consistency with coarse-grained atomic-level simulations. The proposed method is applied to learn the parameters of the shear transformation zone (STZ) theory of plasticity that describes plastic deformation in amorphous solids as well as coarse-graining parameters needed to translate between atomistic and continuum representations. We show that the methodology is able to successfully link coarse-grained microscale simulations to macroscale observables and achieve a high-level of parity between the models across scales.Comment: 34 pages, 12 figures, references added, Section 4 added, Section 2.1 update

    Mapping lightning in the sky with a mini array

    Get PDF
    Mini arrays are commonly used for infrasonic and seismic studies. Here we report for the first time the detection and mapping of distant lightning discharges in the sky with a mini array. The array has a baseline to wavelength ratio ∼4.2·10−2 to record very low frequency electromagnetic waves from 2 to 18 kHz. It is found that the mini array detects ∼69 lightning pulses per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are ∼900–1100 km away and a rigorous selection criterion based on the quality of the wavefront across the array is used. In particular, lightning pulses that exhibit a clockwise phase progression are found at larger elevation angles in the sky as the result of a birefringent subionospheric wave propagation attributed to ordinary and extraordinary waves. These results imply that long range lightning detection networks might benefit from an exploration of the wave propagation conditions with mini arrays.</p

    Glossary on atmospheric electricity and its effects on biology

    Get PDF
    There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research
    corecore