4 research outputs found

    Calibration Strategy of the JUNO-TAO Experiment

    No full text
    The Taishan Antineutrino Observatory (JUNO-TAO, or TAO) is a satellite detector for the Jiangmen Underground Neutrino Observatory (JUNO). Located near the Taishan reactor, TAO independently measures the reactor's antineutrino energy spectrum with unprecedented energy resolution. To achieve this goal, energy response must be well calibrated. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS) of TAO, multiple radioactive sources are deployed to various positions in the detector to perform a precise calibration of energy response. The non-linear energy response can be controlled within 0.6% with different energy points of these radioactive sources. It can be further improved by using 12B^{12}\rm B decay signals produced by cosmic muons. Through the energy non-uniformity calibration, residual non-uniformity is less than 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. In addition, the stability of other detector parameters, such as the gain of each silicon photo-multiplier, can be monitored with a special ultraviolet LED calibration system

    Calibration Strategy of the JUNO-TAO Experiment

    No full text
    The Taishan Antineutrino Observatory (JUNO-TAO, or TAO) is a satellite detector for the Jiangmen Underground Neutrino Observatory (JUNO). Located near the Taishan reactor, TAO independently measures the reactor's antineutrino energy spectrum with unprecedented energy resolution. To achieve this goal, energy response must be well calibrated. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS) of TAO, multiple radioactive sources are deployed to various positions in the detector to perform a precise calibration of energy response. The non-linear energy response can be controlled within 0.6% with different energy points of these radioactive sources. It can be further improved by using 12B^{12}\rm B decay signals produced by cosmic muons. Through the energy non-uniformity calibration, residual non-uniformity is less than 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. In addition, the stability of other detector parameters, such as the gain of each silicon photo-multiplier, can be monitored with a special ultraviolet LED calibration system

    Calibration Strategy of the JUNO-TAO Experiment

    Full text link
    The Taishan Antineutrino Observatory (JUNO-TAO, or TAO) is a satellite detector for the Jiangmen Underground Neutrino Observatory (JUNO). Located near the Taishan reactor, TAO independently measures the reactor's antineutrino energy spectrum with unprecedented energy resolution. To achieve this goal, energy response must be well calibrated. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS) of TAO, multiple radioactive sources are deployed to various positions in the detector to perform a precise calibration of energy response. The non-linear energy response can be controlled within 0.6% with different energy points of these radioactive sources. It can be further improved by using 12B^{12}\rm B decay signals produced by cosmic muons. Through the energy non-uniformity calibration, residual non-uniformity is less than 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. In addition, the stability of other detector parameters, such as the gain of each silicon photo-multiplier, can be monitored with a special ultraviolet LED calibration system

    Calibration strategy of the JUNO-TAO experiment

    No full text
    The Taishan Antineutrino Observatory (TAO or JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). Located near a reactor of the Taishan Nuclear Power Plant, TAO will measure the reactor antineutrino energy spectrum with an unprecedented energy resolution of < 2% at 1 MeV. Energy calibration is critical to achieve such a high energy resolution. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS), multiple radioactive sources are deployed to various positions in the TAO detector for energy calibration. The residual non-uniformity can be controlled within 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. The uncertainty of the non-linear energy response can be controlled within 0.6% with the radioactive sources of various energies, and could be further improved with cosmogenic 12B which is produced by the interaction of cosmic muon in the liquid scintillator. The stability of other detector parameters, e.g., the gain of each Silicon Photo multiplier, will be monitored with an ultraviolet LED calibration system
    corecore