1,245 research outputs found

    Transverse momentum spectra of hadrons in p+pp+p collisions at CERN SPS energies from the UrQMD transport model

    Full text link
    The UrQMD transport model, version 3.4, is used to study the new experimental data on transverse momentum spectra of π±\pi^{\pm}, K±K^{\pm}, pp and pˉ\bar p produced in inelastic p+pp+p interactions at SPS energies, recently published by the NA61/SHINE Collaboration. The comparison of model predictions to these new measurements is presented as a function of collision energy for central and forward particle rapidity intervals. In addition, the inverse slope parameters characterizing the transverse momentum distributions are extracted from the predicted spectra and compared to the corresponding values obtained from NA61/SHINE distributions, as a function of particle rapidity and collision energy. A complex pattern of deviations between the experimental data and the UrQMD model emerges. For charged pions, the fair agreement visible at top SPS energies deteriorates with the decreasing energy. For charged KK mesons, UrQMD significantly underpredicts positive kaon production at lower beam momenta. It also underpredicts the central rapidity proton yield at top collision energy and overpredicts antiproton production at all considered energies. We conclude that the new experimental data analyzed in this paper still constitute a challenge for the present version of the model.Comment: 15 pages, 10 figure

    The Spectator Electromagnetic Effect on Charged Pion Spectra in Peripheral Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We estimate the electromagnetic effect of the spectator charge on the momentum spectra of π+\pi^+ and π−\pi^- produced in peripheral Pb+Pb collisions at SPS energies. We find that the effect is large and results in strongly varying structures in the xFx_F dependence of the π+/π−\pi^+/\pi^- ratio, especially at low transverse momenta where a deep valley in the above ratio is predicted at xF∼x_F \sim 0.15 -- 0.20. It appears that the effect depends on initial conditions. Thus, it provides new information on the space and time evolution of the non-perturbative pion creation process.Comment: 20 pages and 8 figure

    The Gluon Exchange Model in proton-nucleus collisions

    Full text link
    We apply our recently formulated Gluon Exchange Model (GEM) to baryon production in proton-nucleus reactions involving N>1 proton-nucleon collisions. We propose a description scheme for the process of soft color octet (gluon) exchange, based on the assumption that probabilities to form an effective diquark are equal for all allowed pairs of quarks. The latter effective diquark can form either from two valence, one valence and one sea, or from two sea quarks. Consequently we calculate the probabilities for different color configurations involving diquarks of valence-valence, valence-sea and sea-sea type. These probabilities appear to depend on the number of exchanged gluons, which results in increasing baryon stopping as a function of the number of proton-nucleon collisions in the nucleus. As such, the nuclear stopping power appears to be governed by the emergence of new color configurations as a function of N rather than by the energy loss of the original valence diquark. The advantage of our approach lies in its high predictive power which makes it verifiable by the new, precise data on proton and neutron production from the CERN SPS. The latter verification, and a set of predictions for the N-dependence of the baryon stopping process, are included in the letter.Comment: 15 pages, 4 figure
    • …
    corecore