554 research outputs found
Options are limited
French version available in IDRC Digital Library: Tiers-Monde : peu d'options sanitaire
Tiers-Monde : peu d'options sanitaires
Version anglaise disponible dans la Bibliothèque numérique du CRDI: Options are limite
The evolution of energy in flow driven by rising bubbles
We investigate by direct numerical simulations the flow that rising bubbles
cause in an originally quiescent fluid. We employ the Eulerian-Lagrangian
method with two-way coupling and periodic boundary conditions. In order to be
able to treat up to 288000 bubbles, the following approximations and
simplifications had to be introduced: (i) The bubbles were treated as
point-particles, thus (ii) disregarding the near-field interactions among them,
and (iii) effective force models for the lift and the drag forces were used. In
particular, the lift coefficient was assumed to be 1/2, independent of the
bubble Reynolds number and the local flow field. The results suggest that large
scale motions are generated, owing to an inverse energy cascade from the small
to the large scales. However, as the Taylor-Reynolds number is only in the
range of 1, the corresponding scaling of the energy spectrum with an exponent
of -5/3 cannot develop over a pronounced range. In the long term, the property
of local energy transfer, characteristic of real turbulence, is lost and the
input of energy equals the viscous dissipation at all scales. Due to the lack
of strong vortices the bubbles spread rather uniformly in the flow. The
mechanism for uniform spreading is as follows: Rising bubbles induce a velocity
field behind them that acts on the following bubbles. Owing to the shear, those
bubbles experience a lift force which make them spread to the left or right,
thus preventing the formation of vertical bubble clusters and therefore of
efficient forcing. Indeed, when the lift is artifically put to zero in the
simulations, the flow is forced much more efficiently and a more pronounced
energy accumulates at large scales is achieved.Comment: 9 pages, 7 figure
Stop the faecal peril : a technology review
Published as IDRC-102e under the title Low-cost technology options for sanitation : a state of the art review and annotated bibliograph
Solutions de technologies économiques pour l'assainissement
Traduction de Low cost technology options for sanitation : a state of the art review and annotated bibliographySans bibliographiePhotocopi
Quantifying transport within a two-cell microdroplet induced by circular and sharp channel bends
Abstract not availableSanjeeva Balasuriya
Trapping of strangelets in the geomagnetic field
Strangelets coming from the interstellar medium (ISM) are an interesting
target to experiments searching for evidence of this hypothetic state of
hadronic matter. We entertain the possibility of a {\it trapped} strangelet
population, quite analogous to ordinary nuclei and electron belts. For a
population of strangelets to be trapped by the geomagnetic field, these
incoming particles would have to fulfill certain conditions, namely having
magnetic rigidities above the geomagnetic cutoff and below a certain threshold
for adiabatic motion to hold. We show in this work that, for fully ionized
strangelets, there is a narrow window for stable trapping. An estimate of the
stationary population is presented and the dominant loss mechanisms discussed.
It is shown that the population would be substantially enhanced with respect to
the ISM flux (up to two orders of magnitude) due to quasi-stable trapping.Comment: 10 pp., 5 figure
Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free surface
International audienceWe investigate numerically the axisymmetric migration of bubbles toward a free surface, using a boundary-integral technique. Our careful numerical implementation allows to study the bubble(s) deformation and film drainage; it is benchmarked against several tests. The rise of one bubble toward a free surface is studied and the computed bubble shape compared with the results of Princen [J. Colloid Interface Sci. 18, 178 (1963)]. The liquid film between the bubble and the free surface is found to drain exponentially in time in full agreement with the experimental work of Debre'geas et al. [Science 279, 1704 (1998)]. Our numerical results also cast some light on the role played by the deformation of the fluid interfaces and it turns out that for weakly deformed interfaces (high surface tension or a tiny bubble) the film drainage is faster than for a large fluid deformation. By introducing one or two additional bubble(s) below the first one, we examine to which extent the previous trends are affected by bubble-bubble interactions. For instance, for a 2-bubble chain, decreasing the bubblebubble separation increases the deformation of the last bubble in the chain. Finally, the exponential drainage of the film between the free surface and the closest bubble is preserved, yet the drainage is enhanced
- …