15 research outputs found
Ferromagnetic Josephson switching device with high characteristic voltage
We develop a fast Magnetic Josephson Junction (MJJ) - a superconducting
ferromagnetic device for a scalable high-density cryogenic memory compatible in
speed and fabrication with energy-efficient Single Flux Quantum (SFQ) circuits.
We present experimental results for
Superconductor-Insulator-Ferromagnet-Superconductor (SIFS) MJJs with high
characteristic voltage IcRn of >700 uV proving their applicability for
superconducting circuits. By applying magnetic field pulses, the device can be
switched between MJJ logic states. The MJJ IcRn product is only ~30% lower than
that of conventional junction co-produced in the same process, allowing for
integration of MJJ-based and SIS-based ultra-fast digital SFQ circuits
operating at tens of gigahertz.Comment: 10 pages, 4 figure
Imaging spontaneous currents in superconducting arrays of pi-junctions
Superconductors separated by a thin tunneling barrier exhibit the Josephson
effect that allows charge transport at zero voltage, typically with no phase
shift between the superconductors in the lowest energy state. Recently,
Josephson junctions with ground state phase shifts of pi proposed by theory
three decades ago have been demonstrated. In superconducting loops,
pi-junctions cause spontaneous circulation of persistent currents in zero
magnetic field, analogous to spin-1/2 systems. Here we image the spontaneous
zero-field currents in superconducting networks of temperature-controlled
pi-junctions with weakly ferromagnetic barriers using a scanning SQUID
microscope. We find an onset of spontaneous supercurrents at the 0-pi
transition temperature of the junctions Tpi = 3 K. We image the currents in
non-uniformly frustrated arrays consisting of cells with even and odd numbers
of pi-junctions. Such arrays are attractive model systems for studying the
exotic phases of the 2D XY-model and achieving scalable adiabatic quantum
computers.Comment: Pre-referee version. Accepted to Nature Physic
Properties of ferromagnetic Josephson junctions for memory applications
In this work we give a characterization of the RF effect of memory switching
on Nb-Al/AlOx-(Nb)-PdFe-Nb Josephson junctions as a function
of magnetic field pulse amplitude and duration, alongside with an
electrodynamical characterization of such junctions, in comparison with
standard Nb-Al/AlOx-Nb tunnel junctions. The use of microwaves to tune the
switching parameters of magnetic Josephson junctions is a step in the
development of novel addressing schemes aimed at improving the performances of
superconducting memories.Comment: IEEE Trans. Appl. Supercond. Special Issue ISEC201
Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers
The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics. In this work, we propose an approach for realization of on-chip hybrid magnonic systems with unprecedentedly strong coupling parameters. The approach is based on multilayered microstructures containing superconducting, insulating, and ferromagnetic layers with modified photon phase velocities and magnon eigenfrequencies. The enhanced coupling strength is provided by the radically reduced photon mode volume. Study of the microscopic mechanism of the photon-to-magnon coupling evidences formation of the long-range superconducting coherence via thick strong ferromagnetic layers in superconductor/ferromagnet/superconductor trilayer in the presence of magnetization precession. This discovery offers new opportunities in microwave superconducting spintronics for quantum technologies
Proximity effect in superconductor–ferromagnet heterostructures
We discuss the particularities of the proximity effect in superconductor–ferromagnet systems: the damped oscillatory behavior of the Cooper pair wave function, the oscillations of the critical temperature in S/F bilayers and multilayers and the conditions for the π-Josephson junctions formation. Also we outline the possibility of the formation of the novel type of the Josephson junction, intermediate between the 0 and π junction
Ferromagnet/Superconductor Hybridization for Magnonic Applications
In this work, a new hybridization of superconducting and ferromagnetic orders is demonstrated, promising for magnonics. By measuring the ferromagnetic and spin wave resonance absorption spectra of a magnetostatically coupled permalloy/niobium bilayer at different temperatures, magnetostatic spin wave resonances with unconventional dispersion are observed. The mechanism behind the modified dispersion, confirmed with micromagnetic simulations, implies screening of the alternating magnetostatic stray fields of precessing magnetic moments in the ferromagnetic layer by the superconducting surface in the Meissner state
Ferromagnet/Superconductor Hybrid Magnonic Metamaterials
In this work, a class of metamaterials is proposed on the basis of ferromagnet/superconductor hybridization for applications in magnonics. These metamaterials comprise of a ferromagnetic magnon medium that is coupled inductively to a superconducting periodic microstructure. Spectroscopy of magnetization dynamics in such hybrid evidences formation of areas in the medium with alternating dispersions for spin wave propagation, which is the basic requirement for the development of metamaterials known as magnonic crystals. The spectrum allows for derivation of the impact of the superconducting structure on the dispersion: it takes place due to a diamagnetic response of superconductors on the external and stray magnetic fields. In addition, the spectrum displays a dependence on the superconducting critical state of the structure: the Meissner and the mixed states of a type II superconductor are distinguished. This dependence hints toward nonlinear response of hybrid metamaterials on the magnetic field. Investigation of the spin wave dispersion in hybrid metamaterials shows formation of allowed and forbidden bands for spin wave propagation. The band structures are governed by the geometry of spin wave propagation: in the backward volume geometry the band structure is conventional, while in the surface geometry the band structure is nonreciprocal and is formed by indirect band gaps