14 research outputs found

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%

    Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    Get PDF
    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\% to 5\%

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    Investigation and substantiation of the parameters of the plow body angle lift

    No full text
    Currently plowing fields from under various agricultural crops is carried out with reverse plows in Uzbekistan. Their use can dramatically reduce labor and money costs for conducting current and capital field planning. With the supply of energy-rich wheeled tractors to the Republic of Uzbekistan, one of the most effective ways to increase the productivity of plowing units at present is to increase the plow's working width by increasing the number of housings. Increasing the number of hulls on revolving ploughs, equipped with pre-ploughs, this leads to a sharp increase in the metal and energy consumption of ploughs, since the latter have a double number of working elements. Therefore, an important role is played by the optimal placement of plow bodies along the plow course and the maximum reduction of distances between them, when using angle plates on the bodies instead of traditional pre-plows. The article discusses experimental influence of the angle-lift radius of curvature, the installation height, and the installation angles in the longitudinally-vertical and transversely-vertical planes on the traction resistance of the hull and the depth of embedding of plant remains was studied by MRI

    Studies of turbulent coolant mixing flows in the new generation reactors

    No full text
    Due to studying of the flow parameters in the downcomer the bottom plenum of the nuclear reactor can be carried out with the help of CFD programs, the work is devoted to experimental researches in the field of pressurized water reactor with the purpose of creation of benchmarks for verification of domestic codes of computational hydrodynamics. Such data must have high spatial resolution, high resolution and high accuracy of the measurements. It makes necessary to apply complex experimental methodologies, measurement instrumentation and careful adjustment of experimental methodology. So a brief description of the experimental stand and its research methodology is given. A spatial conductometric measuring system that allows to study the processes of turbulent mixing of flows in the complex geometry of the nuclear reactor is presented. The description of experimental research and their results are presented. Conclusions are drawn about the prospects of using spatial conductometry as a vortex-resolving measurement method

    Studies of turbulent coolant mixing flows in the new generation reactors

    No full text
    Due to studying of the flow parameters in the downcomer the bottom plenum of the nuclear reactor can be carried out with the help of CFD programs, the work is devoted to experimental researches in the field of pressurized water reactor with the purpose of creation of benchmarks for verification of domestic codes of computational hydrodynamics. Such data must have high spatial resolution, high resolution and high accuracy of the measurements. It makes necessary to apply complex experimental methodologies, measurement instrumentation and careful adjustment of experimental methodology. So a brief description of the experimental stand and its research methodology is given. A spatial conductometric measuring system that allows to study the processes of turbulent mixing of flows in the complex geometry of the nuclear reactor is presented. The description of experimental research and their results are presented. Conclusions are drawn about the prospects of using spatial conductometry as a vortex-resolving measurement method

    Investigation of Soft Magnetic Material Fe-6.5Si Fracture Obtained by Additive Manufacturing

    No full text
    The freeform capability additive manufacturing (AM) technique and the magnetic efficiency of Fe-6.5Si steel have the potential for the development of electromechanical component designs with thin body sections. Moreover, the directional anisotropy of the material, which is formed during growth, improves the magnetic and electrical properties of Fe-6.5 wt%Si. We obtained the range of optimal technological modes of Laser Power Bed Fusion process (volume energy density (VED) of 100–140 J/mm3, scanning speed of 750–500 mm/s) to produce the samples from Fe-6.5 wt%Si powder, but even at the best of them cracks may appear. The optical microscopy and SEM with EDX analysis of the laser-fabricated structures are applied for investigation of this phenomena. We detected a carbon content at the boundaries of the cracks. This suggests that one of the reasons for the crack formation is the presence of Fe3C in the area of the ordered α’FeSi (B2)+Fe3Si(D03) phases. Quantitative analysis based on crack initiation criteria (CIC) showed that the safe level of internal stresses in terms of the CIC criteria in the area of discontinuities is exceeded by almost 190%. Local precipitates of carbides in the area of cracks are explained by the heterogeneity and high dynamics of temperature fields, as well as the transfer of substances due to Marangoni convection, which, as a result, contributes to a significant segregation of elements and the formation of precipitate phases
    corecore